This article presents a modified cochlear surface preparation method that requires decalcification and use of a cell and tissue adhesive to adhere the pieces of cochlear epithelia to 10 mm round cover slips for immunohistochemistry in adult mouse cochleae.
Auditory processing in the cochlea depends on the integrity of the mechanosensory hair cells. Over a lifetime, hearing loss can be acquired from numerous etiologies such as exposure to excessive noise, the use of ototoxic medications, bacterial or viral ear infections, head injuries, and the aging process. Loss of sensory hair cells is a common pathological feature of the varieties of acquired hearing loss. Additionally, the inner hair cell synapse can be damaged by mild insults. Therefore, surface preparations of cochlear epithelia, in combination with immunolabeling techniques and confocal imagery, are a very useful tool for the investigation of cochlear pathologies, including losses of ribbon synapses and sensory hair cells, changes in protein levels in hair cells and supporting cells, hair cell regeneration, and determination of report gene expression (i.e., GFP) for verification of successful transduction and identification of transduced cell types. The cochlea, a bony spiral-shaped structure in the inner ear, holds the auditory sensory end organ, the organ of Corti (OC). Sensory hair cells and surrounding supporting cells in the OC are contained in the cochlear duct and rest on the basilar membrane, organized in a tonotopic fashion with high-frequency detection occurring in the base and low-frequency in the apex. With the availability of molecular and genetic information and the ability to manipulate genes by knockout and knock-in techniques, mice have been widely used in biological research, including in hearing science. However, the adult mouse cochlea is miniscule, and the cochlear epithelium is encapsulated in a bony labyrinth, making microdissection difficult. Although dissection techniques have been developed and used in many laboratories, this modified microdissection method using cell and tissue adhesive is easier and more convenient. It can be used in all types of adult mouse cochleae following decalcification.
The cochlea is dedicated to the detection of sound and responsible for hearing. The cochlear duct is coiled in a spiral shape in the bony labyrinth and holds the auditory sensory end organ, the organ of Corti (OC). The OC rests on the basilar membrane, making up the cochlear epithelium, with a length of about 5.7 mm when uncoiled in adult CBA/CaJ mice1,2. Because the OC is tonotopically organized with high frequencies detected in the base and low frequencies in the apex, the cochlear epithelium is often divided into three parts for analytical comparisons: the apical, middle, and basal turns corresponding to low, middle, and high frequency detection, respectively. In addition to an array of supporting cells, the OC is composed of one row of inner hair cells (IHCs) located medially and three rows of outer hair cells (OHCs) located laterally with respect to the cochlear spiral.
Correct auditory processing depends on the integrity of the sensory hair cells in the cochlea. Damage to or loss of sensory hair cells is a common pathological feature of acquired hearing loss, caused by numerous etiologies such as exposure to excessive noise, the use of ototoxic medications, bacterial or viral ear infections, head injuries, and the aging process3. Additionally, the integrity and function of the inner hair cell/auditory nerve synapses can be impaired by mild insults4. With the availability of molecular and genetic information and manipulation of genes by knockout and knock-in techniques, mice have been widely used in hearing science. Although the adult mouse cochlea is minuscule and the cochlear epithelium is surrounded by a bony capsule resulting in technically difficult microdissections, surface preparations of the epithelium in combination with immunolabeling or immunohistochemistry and confocal imagery have been broadly used for investigation of cochlear pathologies, including losses of ribbon synapses and hair cells, changes in levels of proteins in sensory hair cells and supporting cells, and hair cell regeneration. Cochlear surface preparations have also been used to determine the pattern of expression of reporter genes (i.e., GFP) and confirm successful transduction and identify transduced cell types. These techniques have been previously used for the study of molecular mechanisms underlying noise-induced hearing loss using adult CBA/J mice5,6,7,8,9.
Unlike immunohistochemistry using paraffin sections or cryosections to obtain small cross-sectional portions of the cochlea that contain three outer hair cells (OHCs) and one inner hair cell (IHC) on each section, cochlear surface preparations allow visualization of the entire length of the OC for counting sensory hair cells and ribbon synapses and immunolabeling of sensory hair cells corresponding to specific functional frequencies. Table 1 shows the mapping of hearing frequencies as a function of distance along the length of the cochlear spiral in adult CBA/J mouse according to studies from Muller1 and Viberg and Canlon1,2. Cochlear surface preparations have been widely used for investigation of cochlear pathologies4,5,6,7,8,9,10,11,12,13,14,15. The whole-mount cochlear dissection method was originally described in a book edited by Hans Engstrom in 196616. This technique was subsequently refined and adapted to a variety of species as described in the literature by a number of scientists in hearing science10,11,12,13,15,17 and by the Eaton-Peabody Laboratories at Massachusetts Eye and Ear18. Recently, another cochlear dissection method was reported by Montgomery et al.19. Microdissection of the cochlea is an essential and critical step for cochlear surface preparations. However, dissecting mouse cochleae is a technical challenge and requires considerable practice. Here, a modified cochlear surface preparation method is presented for use in adult mouse cochleae. This method requires decalcification and use of cell and tissue adhesive (i.e., Cell-Tak) to adhere the pieces of cochlear epithelium to 10 mm round coverslips for immunolabeling. Cell and tissue adhesive has been widely used for immunohistochemistry20. This modified cochlear microdissection method is relatively simple compared to those previously reported18,19.
All research protocols involving male adult CBA/J mice at the ages of 10–12 weeks and C57BL/6J mice at the ages of 6–8 weeks were approved by the Institutional Animal Care and Use Committee (IACUC) at the Medical University of South Carolina (MUSC). Animal care was under the supervision of the Division of Laboratory Animal Resources at MUSC.
NOTE: For the procedures presented below, mice are anesthetized with ketamine (100 mg/kg) and xylazine (10 mg/kg) via intraperitoneal injections. Mice are decapitated after the animal no longer responds to painful stimuli, such as a toe pinch.
1. Extraction of Temporal Bones
2. Fixation and Perfusion
3. Decalcification of the Temporal Bone
4. Microdissection of the Cochlear Epithelium
NOTE: Once decalcification is complete, microdissection of cochlear epithelium for immunolabeling needs to be performed as soon as possible. In a clean 30 mm Petri dish containing PBS, the inner ear is oriented in the following manner: in reference to the Petri dish’s top (lid) and bottom, the cochlear round and oval windows face the top. In reference to dissector, the cochlear portion is oriented toward the front (away from dissector) and vestibular portion toward the back (near dissector). The following describes the steps in detail.
5. Immunolabeling for Cochlear Synapses
NOTE: The protocol for immunolabeling for cochlear synapses followed in this study has been previously described13. Presynaptic ribbons were labeled with a CtBP2 antibody (mouse anti-carboxyl-terminal binding protein 2 IgG1, labeling the B domain of the RIBEYE scaffolding protein). Post synaptic terminals were labeled with GluA2 antibody (mouse anti-glutamate receptor 2 IgG2a, labeling subunits of the AMPA receptor).
Surface preparations of the cochlear epithelium, in combination with immunolabeling and confocal imaging, have been used broadly in hearing science for the investigation of cochlear pathologies, such as quantification of ribbon synapses, sensory hair cells, and protein expression in sensory hair cells5,6,7,8. Although the dissection of adult mouse cochleae for surface preparations is not simple, new graduate students are able to learn this modified method after practicing with 10–15 ears (Figure 1 and Figure 2). With this technique, in combination with immunolabeling for CtBP2 (a marker for presynaptic ribbons) and GluA2 (a marker for post synaptic terminals), counting IHC/auditory nerve synapses using confocal images under Z projections with 0.25 µm intervals, based on the size of mouse ribbon synapses, is possible21. This is consistent with published results4,6,13. Surface preparations of CBA/J mice (without treatment) at the age of 10–12 weeks immunolabeled with CtBP2 (red) and GluA2 (green) showed that both presynaptic ribbons and post synaptic terminals are located below the IHC nuclei and are juxtaposed, indicating functional synapses (Figure 3)6,13.
By immunolabeling surface preparations with different antibodies, assessment of molecular signaling and structure in sensory hair cells is possible. For example, Figure 4 shows the results for immunolabeling for myosin VIIa and counterstaining with phalloidin and 4’,6-diamidino-2-phenylindole (DAPI). Parallel immunolabeling experiments with and without the cell and tissue adhesive using identical solutions have been conducted to assess if the adhesive used interferes with the immunoreactions. Cochlear surface preparations were immunolabeled with myosin VIIa and counterstained with phalloidin. Confocal images were taken with a 63x magnification lens under identical conditions and equal parameter settings for laser gains and photomultiplier tube (PMT) gains. There was no difference in immunoreactions or uniformity with and without the cell and tissue adhesive (Figure 5). Using different fixatives, surface preparations have provided the basis for scanning electron microscopy (SEM) images for visualization of cochlear stereocilia9. C57BL/6J mice (without treatment) at the age of 6–8 weeks show well-organized V-shaped stereocilia of OHCs in three rows (Figure 6). Additionally, cochlear surface preparations have been used to determine the pattern of expression of a report gene (i.e., GFP) and confirm successful transduction and identify transduced cell types.
Figure 1: Depiction of the steps for adult mouse surface preparations. (a) The cochlear bony capsule of the temporal bone faces up. The red line indicates the first cut to separate the apical turn. RW = round window, OW = oval window. (b) The apex is separated from the cochlea as indicated by the arrow. The red line between round window and oval window indicates the second cut made in the cochlea. (c) The cochlear portion that contains the middle, basal, and hook regions is separated from the vestibular portion. (d) The cochlear portion is situated facing up. The red line indicates the third cut, directed towards the end from which the apical section was removed. (e) The arrow indicates the gap left after the completion of the third cut. (f) This image shows the middle region. (g) This image shows the combined basal and hook regions. The vertical red line indicates the cut between the modiolus and hook region. The cut between the basal and hook regions is indicated by the other red line. (h) Basal and hook regions are separated as indicated by the arrows. (i) The middle region of the bony capsule is cut as indicated by the red line. (j) The image shows the middle region after one side of the bony capsule is removed. (k) This image shows the middle region after completion of dissection. (l) All four regions are completely dissected. (m) Cochlear turns affixed to a 10 mm round coverslip transferred to a four-well Petri dish with the four regions as indicated. All images were taken under a stereo-dissection microscope at 1.2x, 2.5x, and 0.6x magnifications. Scale bars are indicated in each image. Please click here to view a larger version of this figure.
Figure 2: Location of the major cuts. The entire cochlear bony capsule was removed. The locations of the major cuts are indicated. 1) The location where the apical turn is cut. 2) The site where the middle turn is separated. 3) The critical cut to remove the modiolus. 4) The line to divide the basal and hook regions. Scale bar = 0.5 mm. Please click here to view a larger version of this figure.
Figure 3: Confocal images reveal immunolabeling for CtBP2 and GluA2 on adult mouse surface preparations. The apical, middle, and basal regions are labelled. The lower magnification confocal images were taken with a 10x lens. Red = CtBP2, green = GluA2. Scale bar = 100 µm. Confocal images of 5-, 16-, and 32-kHz regions were taken with a 63x lens. Enlarged views of the areas indicated by the white rectangles in the apex, middle, and base portions. Scale bar = 10 µm. Please click here to view a larger version of this figure.
Figure 4: Confocal images reveal immunolabeling of sensory hair cells of a surface preparation from the 32-kHz region. All images were merged Z-stack projections. Phalloidin (green) stained the structure of the three rows of OHCs and one row of IHCs. Myosin VIIa (red) immunolabeled three rows of OHCs and one row of IHCs. DAPI-stained hair cell nuclei. Merged confocal images were reconstructed for side views of sensory hair cells. Scale bar = 10 µm. Please click here to view a larger version of this figure.
Figure 5: Cochlear surface preparations with and without the cell and tissue adhesive were processed in parallel, immunolabeled for myosin VII (red), and counterstained with phalloidin (green) using identical solutions. The cell and tissue adhesive used does not interfere with immunoreactions. Confocal images were taken with a 63x magnification lens under identical conditions and equal parameter settings. Images were taken from the 32 kHz region. Immunolabeling for myosin VIIa and staining for phalloidin in OHCs was similar with and without the cell and tissue adhesive. Scale bar = 10 µm. Please click here to view a larger version of this figure.
Figure 6: Scanning electron microscopy shows three rows of OHC stereocilia from C57BL/6J mice. Images were taken from the middle region. (a) A low-magnification view of three rows of OHCs. (b) Enlarged images show three rows of well-organized OHC stereocilia that appear in “V” shapes. Scale bar = 10 µm. Please click here to view a larger version of this figure.
Name | ||||||||
Distance from the apex (mm) | 0.4 | 1 | 2.4 | 3.3 | 3.9 | 4.7 | 5.7 | |
Distance from the apex (%) | 7.7 | 18 | 43 | 54 | 68 | 82 | 100 | |
Frequencies (kHz) | 6 | 8 | 16 | 22 | 32 | 48 |
Table 1: Mapping of the CBA/J mouse cochlear frequency sensitivity as a function of distance from the apex according to Muller1 and Viberg and Canlon2.
Cochlear microdissection of whole-mount surface preparations in combination with immunolabeling provides a basic tool for investigation of inner ear pathologies and molecular mechanisms. This modified adult mouse cochlear dissection method using the cell and tissue adhesive simplifies this difficult procedure.
Although this modified cochlear surface preparation method is relatively easy and accessible, it still requires practice in order to achieve proficiency. To make the correct cuts, the dissector needs careful concentration. Because the cochlear sensory hair cells in the basal turn are so close to the spiral limbus, it is difficult to fully remove the limbus tissue to allow the surface preparation to lie completely flat, but confocal Z-projections can compensate for this issue. Additionally, the hook region of the cochlea is still the most difficult portion to dissect. Separations between OHCs and IHCs of the hook region may occur. The hook region displays large anatomic variations in humans and is important for bone-conduction hearing22,23. Based on the cochlear frequency mapping reported by Muller1 and Viberg and Canlon2, the hook region, beginning around 4.7 mm from the apex, corresponds to sensitivity to 48 kHz tones and higher (Table 1), whereas auditory functional assessments of acquired hearing loss in mice, including noise-induced, aminoglycoside-induced hearing loss, and age-related hearing loss, are generally measured at 8, 16, and 32 kHz with auditory brainstem response (ABR)5,6,7,9,24 and from 6–45 kHz with distortion product otoacoustic emission (DPOAE)25. In agreement with Montgomery et al., distortion of the epithelium is not commonly seen when the spiral is divided into 3–4 pieces19.
The modified method presented here involves dissecting the cochlear spiral into only four pieces (apex, middle, basal turns, and the hook region), whereas the Eaton-Peabody technique produces six pieces18. The Eaton-Peabody technique starts with a cochlear bisection, which avoids making tangential cuts through the epithelium to first separate the apical turn from the rest of the spiral, as described in this modified technique. By producing smaller pieces, the Eaton-Peabody technique is designed to minimize the flattening required to view a large piece with an immersion objective. In fact, the larger portions of tissue facilitate measurement of frequency mapping from the apical to the basal turn, in line with Montgomery et al.19. Additionally, a difference between this method and Montgomery et al.19 is that the modified cochlear dissection method described here employs a scalpel for most cuts and only one step is done with scissors (i.e., the separation of basal and hook regions as illustrated in the third cut in Figure 2), whereas Montgomery et al.19 used scissors with a silicone elastomer-coated dissection dish for surface preparations. To avoid distortion of the tissue, disconnection of the basilar membrane to remove the modiolus is critical.
This protocol uses a cell and tissue adhesive (Table of Materials) for adhesion of the pieces of cochlear epithelium to the 10 mm round coverslip for immunolabeling or immunohistochemistry, which makes the processes more convenient and avoids loss of epithelium tissues during the multiple washes of immunolabeling procedures. Cell and tissue adhesive is a formulation of polyphenolic proteins that adheres to cells and tissues and has been widely used in many common in-vitro techniques, including immunohistochemistry, in-situ hybridization, and immunoassays20. Consistent with the notion that the cell and tissue adhesive does not interfere with immunoreactions, parallel immunolabeling of myosin VIIa with surface preparations shows no difference of immunoreactions or uniformity with and without the cell and tissue adhesive. Comparing these three dissection methods (Eaton-Peabody Laboratories, Montgomery et al.19, and the modified method described), the graduate students in the lab agree that this modified method using the cell and tissue adhesive is easier to learn and master.
In summary, producing whole-mount adult mouse surface preparations is a basic skill for evaluation of cochlear pathologies. The described modified protocol for adult mice surface preparations simplifies this difficult procedure.
The authors have nothing to disclose.
The research project described was supported by grant R01 DC009222 from the National Institute on Deafness and Other Communication Disorders, National Institutes of Health. This work was conducted in the WR Building at MUSC in renovated space supported by grant C06 RR014516. Animals were housed in MUSC CRI animal facilities supported by grant C06 RR015455 from the Extramural Research Facilities Program of the National Center for Research Resources. The authors thank Dr. Jochen Schacht for his valuable comments and Andra Talaska for proofreading of the manuscript.
10-mm Rund Coverslips | Microscopy products for science and industry | 260367 | |
Alexa Fluor 488 Goat Anti-mouse IgG2 | Thermo Fisher Scientific | A-21131 | |
Alexa Fluor 488 Phalloidin | Thermo Fisher Scientific | A12379 | |
Alexa Fluor 594 Goat Anti-mouse IgG1 | Thermo Fisher Scientific | A-21125 | |
Alexa Fluor 594 Goat Anti-rabbit IgG (H+L) | Thermo Fisher Scientific | A11012 | |
Carboard Micro Slide Trays | Fisher Scientific | 12-587-10 | |
Cell-Tak | BD Biosciences | 354240 | |
Corning Petri Dishes | Fisher Scientific | 353004 | |
DAPI | Thermo Fisher Scientific | 62247 | |
Dumont #5 Forceps | FST fine science tools | 11251-20 | |
EDTA Disodium Salt | Sigma-Aldrich | E5134 | |
Fluoro-gel with Tris Buffer | Electron Microscopy Sciences | 17985-10 | |
Four-well Cell Culture Dishes | Greiner Bio-One | 627170 | |
Goat Anti-myosin VIIa Antibody | Proteus Biosciences | 25-6790 | |
Microscope Slides | Fisher Scientific | 12-544-7 | |
Mouse Anti-CtBP2 Antibody | BD Biosciences | #612044 | |
Mouse Anti-Glu2R Antibody | Millipore | MAB397 | |
Normal Goat Serum | Thermo Fisher Scientific | 31872 | |
Paraformaldehyde | Sigma-Aldrich | 441244 | |
Phosphate Buffered Saline | Fisher Scientific | BP665-1 | |
Scalpel | VWR | 100491-038 | |
Triton X-100 | Sigma-Aldrich | X100-500ML | |
Vannas Spring Scissors | Fine Science Tools | 15001-08 |