Nós incorporamos diretamente um corante orgânico stilbene-baseado em um núcleo do cobaloxime para gerar um photosensitizer-díade do catalizador para a produção photocatalítica de H2 . Também desenvolvemos uma configuração experimental simples para avaliar a produção de H2 conduzida pela luz por montagens fotocatalíticas.
O desenvolvimento de dispositivos de produção fotocatalíticos H2 é uma das principais etapas para a construção de uma infraestrutura global de energia renovável baseada em h2. Um número de montagens fotoativo emergiu onde um fotossensibilizador e um cobaloxime-baseado H2 catalisadores da produção trabalham em conjunto para converter a energia clara nas ligações químicas de h-h. No entanto, a instabilidade a longo prazo destas assembléias e a necessidade de fontes perigosas de prótons limitaram a sua utilização. Aqui, neste trabalho, nós integramos uma tintura orgânica stilbene-baseada na periferia de um núcleo do cobaloxime através de um enlace axial distinto da piridina. Esta estratégia permitiu-nos desenvolver uma estrutura híbrida fotossensibilizador-catalisador com a mesma estrutura molecular. Neste artigo, nós explicamos o procedimento detalhado da síntese desta molécula híbrida além de sua caracterização química detalhada. Os estudos estruturais e ópticos exibiram uma intensa interação eletrônica entre o núcleo da cobaloxima e o fotossensibilizador orgânico. A cobaloxima foi ativa para a produção de H2 mesmo na presença de água como fonte de prótons. Aqui, nós desenvolvemos um sistema hermético simples conectado com um detector on-line H2 para a investigação da atividade fotocatalítica por este complexo híbrido. Este díade do photosensitizer-catalizador atual na instalação experimental produziu continuamente H2 uma vez que foi exposto na luz solar natural. Esta produção fotocatalítica de H2 pelo complexo híbrido foi observada em meios aquosos/orgânicos da mistura na presença de um doador de elétron do sacrificial circunstâncias aeróbias completas. Assim, este sistema de medição de fotocatálise junto com a díade fotossensibilizador-catalisador fornece uma visão valiosa para o desenvolvimento de dispositivos de produção de H2 fotocatalíticos de próxima geração.
No mundo moderno, os combustíveis fósseis, como o carvão, o petróleo e o gás natural, fornecem uma parte maioritária da energia. No entanto, eles produzem uma quantidade abundante de CO2 durante a colheita de energia para impactar negativamente o clima global1. Nos próximos anos, um aumento acentuado na demanda de energia é previsto em todo o mundo, seguindo o crescimento contínuo da população e melhoria constante no estilo de vida humano. Assim, há uma busca ativa para um recurso de energia alternativa adequado para corresponder à exigência de energia global. Os recursos energéticos renováveis, como energia solar, eólica e das marés, surgiram como uma das melhores soluções devido ao seu processo de transdução de energia de carbono zero favorável ao meio ambiente2. No entanto, a natureza intermitente destes recursos energéticos limitou até agora a sua extensa aplicação. Uma possível solução deste problema pode ser encontrada na biologia; a energia solar é transformada eficientemente na energia química durante a fotossíntese3. Seguindo esta pista, os pesquisadores desenvolveram estratégias fotossintéticas artificiais para armazenar energia solar em ligações químicas após uma série de reações de ativação de pequenas moléculas4,5. A molécula H2 tem sido considerada um dos mais atraentes vetores químicos devido à sua alta densidade de energia e simplicidade de sua transformação química6,7.
A presença de um fotossensibilizador e um catalisador de produção H2 são essenciais para uma configuração de produção de h2 acionada por energia solar ativa. Aqui neste trabalho, vamos focar o complexo molecular baseado em cobalto cobaloxime para o segmento catalítico. Tipicamente, um centro de cobalto coordenado por hexa é acoplado em uma geometria plana quadrada de N4 , derivada dos ligantes de dimetilglicoxime (DMG), em cobaloximes. Os CL– íons complementares, moléculas solventes (como água ou acetonitrila) ou derivados de piridina se ligam nas posições axiais residuais8. Os cobaloximes são muito conhecidos por eletrocatálise de produção ativa H2 e sua reatividade pode ser ajustada acrescentando funcionalidades variáveis na piridina axial9,10,11,12 . As sínteses relativamente não complicadas, a tolerância ao oxigênio condições catalíticas e a resposta catalítica moderada de cobaloximes levaram os pesquisadores a explorarem sua reatividade de produção fotocatalítica H2 . O grupo de Hawecker era o pioneiro em demonstrar a atividade de produção Light-driven de H2 dos cobaloximes usando o ru (polypyridyl)-photosensitizadores baseados13. Eisenberg e seus colegas de trabalho utilizaram fotossensibilizantes inorgânicos baseados em platina (pt) para induzir a produção fotocatalítica de H2 em conjunto com catalisadores de cobaloxima14,15. Posteriormente, o grupo Che utilizou fotossensibilizador organo-ouro para replicar atividade semelhante16. Fontecave e ARTERO ampliaram a gama de fotossensibilizadores aplicando moléculas baseadas em Iridium (ir)17. As aplicações práticas desses sistemas fotocatalíticos estavam em direção a um bloqueio de estrada devido ao uso de fotossensibilizadores de metais caros. Os grupos de pesquisa Eisenberg e Sun têm combatido que, independentemente de conceber orgânico baseado em corante foto-driven H2 sistemas de produção18,19. Apesar da produção bem sucedida da foto-conduzida H2 por todos estes sistemas, observou-se que os turnovers catalíticos totais eram relativamente lentos20. Em todos estes casos, as moléculas do fotossensibilizador e do cobaloxime foram adicionadas como as metades separadas na solução, e a falta da comunicação direta entre eles pôde ter impedido a eficiência total do sistema. Um número de díades do photosensitizer-cobaloxime foi desenvolvido para retificar esta edição, onde uma variedade de photosensitizadores estiveram lig diretamente com o núcleo do cobaloxime através do ligante axial da piridina21,22,23 ,24,25,26. Sun e os colegas de trabalho eram mesmo bem sucedidos em desenvolver um dispositivo livre do nobre-metal introduzindo um motivo do Zn-Porphyrin como um fotossensibilizador24. Recentemente, Ott e colegas de trabalho incorporaram com sucesso o catalizador do cobaloxime dentro de uma estrutura orgânica do metal (MOF) que exibiu a produção photocatalítica de H2 na presença do corante orgânico27. No entanto, a inclusão dos fotossensibilizantes de alto peso molecular no quadro de cobaloxima reduziu a solubilidade da água, afetando a estabilidade a longo prazo das díades condições catalíticas. A estabilidade das díades ativas em condições aquosas durante a catálise é crucial, pois a água onipresente é uma fonte atrativa de prótons durante a catálise. Assim, há uma necessidade séria para o desenvolvimento de um solúvel aquoso, ar-estável photosensitizer-cobaloxime díade sistema para estabelecer um eficiente e econômico foto-driven H2 produção de configuração.
Aqui neste trabalho, ancoramos um corante orgânico baseado em stilbene28 como fotossensibilizador para o núcleo de cobaloxima através do ligante de piridina axial (Figura 1). O peso molecular claro da tintura garantiu a solubilidade melhorada da água da díade. Esta molécula híbrida do stilbene-cobaloxime foi caracterizada no detalhe através da espectroscopia ótica e de 1H NMR junto com sua única elucidação da estrutura de cristal. Os dados eletroquímicos revelaram a produção eletrocatalítica ativa do H2 pelo motivo do cobaloxime mesmo com o corante orgânico acrescentado. Este complexo híbrido exibiu a produção foto-conduzida significativa de H2 quando expor à luz solar direta na presença de um doador de elétron sacrificial apropriado em uma solução 30:70 Water/Dmf (N, n′-dimethylformamide) sem nenhuma degradação do estrutura híbrida como complementada por estudos de espectroscopia óptica. Um dispositivo fotocatalítico simples, consistindo em um detetor de H2 , foi empregado durante o fotocatálise do complexo híbrido que demonstrou a produção contínua do gás de H2 a condição aeróbia aquosa sem nenhum período preliminar do lag. Assim, este complexo híbrido tem o potencial de se tornar a base para o desenvolvimento da próxima geração de catalisadores de produção de H2 movidos a energia solar para uma utilização eficiente de energias renováveis.
A molécula de estilbeno fotossensibilizante orgânica foi incorporada com sucesso no núcleo da cobaloxima através da articulação axial da piridina (Figura 1). Esta estratégia permitiu-nos conceber um complexo híbrido C1de fotossensibilizador-cobaloxime. A presença do corante oxidico e orgânico no mesmo quadro molecular foi evidente a partir da estrutura cristalina única do C1 (Figura 4). As funcionalidades de fenilo e …
The authors have nothing to disclose.
O apoio financeiro foi prestado pelo IIT Gandhinagar e pelo governo da Índia. Gostaríamos também de agradecer o financiamento extramuros fornecido pelo Conselho de pesquisa de ciência e engenharia (Serb) (File no. EMR/2015/002462).
1 mm diameter glassy carbon disc electrode | ALS Co., Limited, Japan | 2412 | 1 |
Acetone | SD fine chemicals | 25214L10 | 27 mL |
Ag/AgCl reference electrode | ALS Co., Limited, Japan | 12171 | 1 |
Co(dmg)2Cl2 | Lab synthesised | NA | 100 mg |
CoCl2.6H2O | Sigma Aldrich | C2644 | 118 mg |
d6 dmso | Leonid Chemicals | D034EAS | 650 µL |
Deionized water from water purification system | NA | NA | 500 mL |
Dimethyl formamide | SRL Chemicals | 93186 | 5 mL |
Dimethyl glyoxime | Sigma Aldrich | 40390 | 232 mg |
Gas-tight syringe | SGE syringe Leur lock | 21964 | 1 |
MES Buffer | Sigma | M8250 | 195 mg |
Methanol | Finar | 67-56-1 | 15 mL |
Platinum counter electrode | ALS Co., Limited, Japan | 2222 | 1 |
Stilbene Dye | Lab synthesised | NA | 65 mg |
TBAF(Tetra-n-butylammonium fluoride) | TCI Chemicals | T1338 | 20 mg |
Triethanolamine | Finar | 102-71-6 | 1 mL |
Triethylamine | Sigma Aldrich | T0886 | 38 µL |
Trifluoroacetic acid | Finar | 76-05-1 | 10 µL |
Whatman filter paper | GE Healthcare | 1001125 | 2 |