移植片対宿主病は、同種骨髄移植後の主要な合併症である。樹状細胞は、移植片対宿主病の病因において重要な役割を果たす。現在の記事では、移植片対宿主病の発症における樹状細胞の役割と移植片対白血病効果を調査するための新しい骨髄移植プラットフォームについて説明しています。
同種骨髄移植(BMT)は、腫瘍を根絶するための移植片対白血病(GVL)効果による血球悪性腫瘍に対する効果的な治療法です。しかし、その適用は、移植片対宿主病(GVHD)、BMTの主要な合併症の開発によって制限される。GVHDは、ドナー移植片のT細胞がレシピエント細胞によって発現する認識allo抗原を誘発し、レシピエントの健康組織に対して望ましくない免疫学的攻撃を仕掛ける。したがって、従来の治療法は、ドナーT細胞のアロロ活性を抑制するように設計されている。しかし、これらのアプローチは、実質的に、レシピエントの生存が改善されないようにGVL効果を損なう。したがって、BMT、GVL、およびGVHDに対する治療アプローチの効果を理解することが不可欠です。ドナーT細胞を刺激する抗原提示およびサイトカイン分泌能力のために、レシピエント樹状細胞(DC)はGVHDの誘導において重要な役割を果たす。したがって、受信者 DC をターゲットにすることは、GVHD を制御するための潜在的なアプローチになります。この研究は、ホストDCが移植後のGVHおよびGVL応答をどのように調節するかを調査するための新しいBMTプラットフォームの説明を提供する。また、移植後のGVHDおよびGVLの生物学を研究するための効果的なBMTモデルも提示される。
同種造血幹細胞移植(BMT)は、移植片対白血病(GVL)効果3を介して血球悪性腫瘍11、22を治療するための有効な治療法である。しかし、ドナーリンパ球は常にレシピエント組織に対して望ましくない免疫学的攻撃を仕掛け、移植片対宿主病(GVHD)4と呼ばれるプロセスである。4
GVHDのマウスモデルはGVHDの生物学とGVL応答5を研究するための効果的なツールです。マウスは費用対効果の高い研究動物モデルです。彼らは小さく、効率的に開発の初期段階で分子や生物学的製剤を使用しています 6.マウスは遺伝的に適切に定義されているため、遺伝子操作研究に理想的な研究動物であり、生物学的経路およびメカニズム6を研究するのに理想的である。GVHDのいくつかのマウス主要組織適合性複合体 (MHC) MHC 不一致モデルは、C57BL/6 (H2b)から BALB/c (H2d)および FVB (H2q)→C57BL/6 (H2b)5,,7など、十分に確立されている。これらは、GVHDに影響を与える個々の細胞タイプ、遺伝子、および因子の役割を決定するための特に貴重なモデルです。C57/BL/6(H2b)から、MHC I(B6.C-H2bm1)および/またはMHC II(B6.C-H2bm12)の突然変異を有するレシピエントへの親ドナーからの移植は、MHCクラスIおよびクラスIIの両方の不一致が急性GVHDの発症にとって重要な要件であることを明らかにした。これは、疾患の発症77,88にCD4+およびCD8+T細胞の両方が必要であることを示唆している。GVHDは「炎症性サイトカイン嵐」9として知られている炎症性カスケードにも関与しています。マウスモデルにおける最も一般的なコンディショニング法は、X線または137Csによる全身照射(TBI)である。これはレシピエントの骨髄切除につながり、ドナー幹細胞の生着を可能にし、移植片の拒絶反応を防ぐ。これは、ドナー細胞に応答してレシピエントT細胞の増殖を制限することによって行われる。さらに、遺伝的格差は疾患誘導において重要な役割を果たすが、これはマイナーなMHCミスマッチ10にも依存する。したがって、骨髄性照射線量は、異なるマウス株(例えば、BALB/c→C57BL/6)で変化する。
抗原提示細胞(APC)によるドナーT細胞の活性化は、GVHDの開発に不可欠である。APCの中でも樹状細胞(DC)が最も強力です。彼らは、優れた抗原取り込み、T細胞共刺激分子の発現、およびT細胞を病原性サブセットに偏光する炎症促進サイトカインの産生により、GVHDを誘導することができる継承可能である。レシピエントDCは、移植後のT細胞プライミングおよびGVHD誘導を促進するために重要である11,,12.従って、DCはGVHD12の治療において興味深いターゲットとなっている。
TBIはドナー細胞の生着を増強するために必要とされる。TBI効果により、レシピエントDCは活性化され、移植後短時間生存する12.生物発光や蛍光の使用が大きく進歩しているにもかかわらず、GVHDにおけるレシピエントDCの役割を研究するための効果的なモデルの確立は依然として困難です。
ドナーT細胞はGVL活性の原動力であるため、ステロイドなどの免疫抑制薬を用いた治療戦略は、しばしば腫瘍再発または感染13を引き起こす。したがって、ターゲットの受信者のDCは、GVL効果を維持し、感染を避けながら、GVHDを治療するための代替アプローチを提供することができます。
簡単に言えば、現在の研究は、受信側DCの異なるタイプのシグナリングが、BMT後のGVHD開発とGVL効果をどのように調節するかを理解するためのプラットフォームを提供する。
特定の個体に適した幹細胞の使用は、進行癌および耐性癌18を治療するための効果的なアプローチである。しかし、低分子医薬品は、長い間、パーソナライズされたがん治療の主な焦点であり続けています。一方、細胞療法では、ドナーと宿主との間の多数の相互作用が、BMT1後のGVHDの発達など、治療結果に決定的に影響を1与えることができる。
<p class=…The authors have nothing to disclose.
この研究は、セントラルフロリダ大学医学部のスタートアップ助成金(HN)、ピッツバーグ大学医療センターヒルマンがんセンターのスタートアップ助成金(HL)、米国NIHグラント#1P20CA210300-01、ベトナム保健省の助成#4694/QD-BYT(PTH)によってサポートされています。研究のための資料を提供してくれたサウスカロライナ医科大学の徐中宇博士に感謝します。
0.5 M EDTA pH 8.0 100ML | Fisher Scientific | BP2482100 | MACS buffer |
10X PBS | Fisher Scientific | BP3994 | MACS buffer |
A20 B-cell lymphoma | University of Central Florida | In house | GVL experiment |
ACC1 fl/fl | Jackson Lab | 30954 | GVL experiment |
ACC1 fl/fl CD4cre | University of Central Florida | GVL experiment | |
Anti-Biotin MicroBeads | Miltenyi Biotec | 130-090-485 | T-cell enrichment |
Anti-Human/Mouse CD45R (B220) | Thermo Fisher Scientific | 13-0452-85 | T-cell enrichment |
Anti-mouse B220 FITC | Thermo Fisher Scientific | 10452-85 | Flow cytometry analysis |
Anti-mouse CD11c- AF700 | Thermo Fisher Scientific | 117319 | Flow cytometry analysis |
Anti-Mouse CD25 PE | Thermo Fisher Scientific | 12-0251-82 | Flow staining |
Anti-Mouse CD4 Biotin | Thermo Fisher Scientific | 13-0041-86 | T-cell enrichment |
Anti-Mouse CD4 eFluor® 450 (Pacific Blue® replacement) | Thermo Fisher Scientific | 48-0042-82 | Flow staining |
Anti-mouse CD45.1 PE | Thermo Fisher Scientific | 12-0900-83 | Flow cytometry analysis |
Anti-Mouse CD8a APC | Thermo Fisher Scientific | 17-0081-83 | Flow cytometry analysis |
Anti-mouse H-2Kb PerCP-Fluor 710 | Thermo Fisher Scientific | 46-5958-82 | Flow cytometry analysis |
Anti-mouse MHC Class II-antibody APC | Thermo Fisher Scientific | 17-5320-82 | Flow cytometry analysis |
Anti-Mouse TER-119 Biotin | Thermo Fisher Scientific | 13-5921-85 | T-cell enrichment |
Anti-Thy1.2 | Bio Excel | BE0066 | BM generation |
B6 fB-/- mice | University of Central Florida | In house | Recipients |
B6.Ly5.1 (CD45.1+) mice | Charles River | 564 | Donors |
BALB/c mice | Charles River | 028 | Transplant recipients |
C57BL/6 mice | Charles River | 027 | Donors/Recipients |
CD11b | Thermo Fisher Scientific | 13-0112-85 | T-cell enrichment |
CD25-biotin | Thermo Fisher Scientific | 13-0251-82 | T-cell enrichment |
CD45R | Thermo Fisher Scientific | 13-0452-82 | T-cell enrichment |
CD49b Monoclonal Antibody (DX5)-biotin | Thermo Fisher Scientific | 13-5971-82 | T-cell enrichment |
Cell strainer 40 uM | Thermo Fisher Scientific | 22363547 | Cell preparation |
Cell strainer 70 uM | Thermo Fisher Scientific | 22363548 | Cell preparation |
D-Luciferin | Goldbio | LUCK-1G | Live animal imaging |
Fetal Bovine Serum (FBS) | Atlanta Bilogicals R&D system | D17051 | Cell Culture |
Flow cytometry tubes | Fisher Scientific | 352008 | Flow cytometry analysis |
FVB/NCrl | Charles River | 207 | Donors |
Lipopolysacharide (LPS) | Millipore Sigma | L4391-1MG | DC mature |
LS column | Mitenyi Biotec | 130-042-401 | Cell preparation |
MidiMACS | Miltenyi Biotec | 130-042-302 | T-cell enrichment |
New Brunswick Galaxy 170R incubator | Eppendorf | Galaxy 170 R | Cell Culture |
Penicilin+streptomycinPenicillin/Streptomycin (10,000 units penicillin / 10,000 mg/ml strep) | GIBCO | 15140 | Media |
RPMI 1640 | Thermo Fisher Scienctific | 11875-093 | Media |
TER119 | Thermo Fisher Scientific | 13-5921-82 | T-cell enrichment |
Xenogen IVIS-200 | Perkin Elmer | Xenogen IVIS-200 | Live animal imaging |
X-RAD 320 Biological Irradiator | Precision X-RAY | X-RAD 320 | Total Body Irradiation |