シンクロトロンビームラインにおけるX線ビーム誘導電流測定の設定について説明する。それは太陽電池のナノスケールの性能を明らかにし、多モーダルX線顕微鏡のための技術のスイートを拡張する。配線から信号対雑音の最適化まで、ハードX線マイクロプローブで最先端のXBIC測定を行う方法を示しています。
X線ビーム誘導電流(XBIC)測定により、太陽電池などの電子機器のナノスケール性能のマッピングが可能です。理想的には、XBICは、マルチモーダルX線顕微鏡アプローチ内の他の技術と同時に採用されています。本明細では、XBICとX線蛍光を組み合わせて、電気的性能と化学組成との点数相関を可能にする例を示す。XBIC測定で最高の信号対雑音比のために、ロックイン増幅が重要な役割を果たします。このアプローチにより、X線ビームはサンプルの上流の光学チョッパーによって変調される。変調されたX線ビーム誘導電気信号は、ロックインアンプを使用してチョッパー周波数に増幅および復調されます。ローパスフィルタ設定、変調周波数、増幅振幅を最適化することで、クリアXBIC信号の抽出にノイズを効率的に抑制できます。同様の設定を使用して、X線ビーム誘導電圧(XBIV)を測定できます。標準的なXBIC/XBIV測定を超えて、XBICは、太陽電池の屋外作業条件がオンシクトゥおよびオペランド測定中に再現できるように、バイアス光またはバイアス電圧で測定することができます。最終的に、ナノスケールでの電子デバイスのマルチモーダルおよび多次元評価は、材料の解決に向けた重要なステップである組成、構造、および性能間の複雑な依存関係に関する新しい洞察を可能にします。パラダイム。
電気エネルギーの需要が絶えず高まっている世界では、クリーンで持続可能なエネルギー源がますます必要とされています。これらの要求に取り組む1つの可能性は、太陽光発電(PV)システム1、2、3です。次世代太陽電池を開発する指示と効率的な方法のためには、太陽電池の組成と構造が性能4にどのように影響するかを理解する必要があります。太陽電池開発における典型的な質問には、最も有害な欠陥の種類と、5、6の場所が含まれます。元素分布に不均一性があり、その影響は7、8、9ですか?モジュールアセンブリとエージング10、11の間に太陽電池はどのように変化しますか?
太陽電池は最も弱い部分と同じくらい良いので、不均一性に本質的に苦しむ多結晶太陽電池の性能に対する組成的および構造的変動の影響を理解することが特に重要である7、8.これは、マイクロメートルの範囲で結晶体サイズを持つ吸収層を含む薄膜(TF)太陽電池に特に当てはまります。ここでは、グレイン境界がパフォーマンスに与える影響は最も高いですが、その小さなサイズとレイヤースタック全体に埋もれているという事実は、ユニークなキャラクタライゼーションの課題を提起します。さらに、共存する相と内部勾配を持つ多成分吸収層の複雑な化学は、高度な特性評価方法12を必要とする。
シンクロトロンベースのハードX線顕微鏡は、TF太陽電池の特性特性特性の課題を満たすことができる:それらはナノメートルスケール13、14、15、16およびX線のスポットサイズを提供し、硬いX線の浸透深さは、埋もれた吸収層を含む異なるデバイス層17をプローブすることを可能にする。スキャンX線顕微鏡で豊富な測定技術を用いると、1つだけではなく、マルチモーダル測定における太陽電池の多くの異なる側面を同時に研究し、観察された特性を相関することが可能になります。例えば、X線ビーム誘導電流(XBIC)測定は、X線蛍光(XRF)7、18、19、X線励起光発光(XEOL)20とうまく組み合わされています。 21、およびX線回折(XRD)22は、電気的性能を組成、光学性能、および構造とそれぞれ23と相関させる。
試験中の太陽電池または他のデバイスのXBIC測定(DUT)24、25の間に、入射X線光子は電子および光子から成る粒子シャワーをオフにし、その結果、励起された電子孔の対の多数を生じる。半導体吸収剤材料中のX線光子の入射。最後に、電子孔対は太陽電池吸収剤のバンドエッジに熱化する。したがって、これらのX線励起電荷キャリアは、通常の太陽電池動作中にバンドギャップのすぐ上にエネルギーを持つ光子の吸収によって生成される電荷キャリアのように扱うことができ、得られた電流または電圧をX線として測定することができます。ビーム誘導電流23、26、27または電圧(XBIV)28、29は、電子ビーム誘導電流(EBIC)またはレーザービーム誘導電流(LBIC)のようなより一般的な測定値に類似しています。その結果、XBIC/XBIV信号は、吸収層の厚さだけでなく、ローカルバンドギャップ、フェルミレベルの分割、組み換えなど、顕微鏡レベルとマクロスコピックレベルの両方でDUTの電気性能にも依存します。これにより、吸収層内の外部励起電子孔対がDUTの電気接点で収集される確率として定義される電荷キャリア収集効率の局所的な変動をマッピングすることができる。
なお、DUTの吸収層で生成される電子孔ペアのみがXBIC/XBIV信号に寄与することに注意してください。金属接点や基板などの他の層で生成された電荷キャリアは、ジャンクションによって分離される可能性がないため、直ちに再結合されます。したがって、他の層は、寄生X線吸収や吸収層で再吸収される可能性のある二次光子や電子の放出などの二次効果を介してXBIC/XBIV測定にのみ影響を与えます。対照的に、すべてのレイヤが XRF 信号に寄与する可能性があります。
XBICおよびXBIV信号が小さくなることが考えられる(多くの場合、サブピコアンペーとナノボルト範囲の変動が目的である)、信号はノイズに簡単に埋もれています。そこで、ロックイン増幅を利用してXBICおよびXBIV信号30を抽出することを提案した。この目的のために、着信X線ビームは図1に示すように光学チョッパーによって変調される。この変調はDUTによって生成される信号に引き継がれ。信号がロックインアンプ(LIA)に供給される前に、プリアンプ(PA)は通常、デジタルLIAの入力でアナログからデジタルコンバータの範囲と生信号強度を一致させるために使用されます。LIAは変調された測定信号を基準信号と混合する。ローパスフィルタを採用することにより、基準信号に近い周波数のみが通過し、31を増幅する。これにより、ノイズの多いバックグラウンドから XBIC または XBIV 信号を効果的に抽出できます。
プロトコルでは、生信号(直流、DC)と変調信号(交流電流、AC)を含むXBIC測定を成功させるための前提条件と動きを紹介します。技術的な詳細を説明するだけでなく、PETRA III13のビームライン P06 でのマルチモーダル測定のコンテキストで XBIC セットアップについて説明します。ほとんどの実験室実験と比較して、ハードX線ナノプローブのハッチ環境は、特定の計画と考慮が必要です。具体的には、ナノメートルスケールの分解能を持つマルチモーダル測定は、様々な特定の制約を持つ実験者に挑戦します。たとえば、電子ノイズは、多くの場合、ピエゾ駆動モーターや検出器の電源などの他の機器からの大きな振幅を持って存在します。さらに、多数のデバイスと検出器を、互いに干渉したり、振動を誘導したりすることなく、最適化されたジオメトリに配置する必要があります。図1はXRFおよび小さい/広角X線散乱(SAXS/WAXS)の測定との組合せによるXBIC測定のための典型的な組み立てを示す。
この章では、ノイズ(a)と走査速度(b)に関する一般的なXBIC測定設定の関連性について最初に説明します。次に、XBIC測定をマルチモーダル測定のコンテキストに入れ、X線ビーム誘発損傷(c)の側面と複数のパラメータ(d)の同時測定に関連する特定の課題について議論します。最後に、XBIC測定値を電子線とレーザービームをプローブ(e)として用いた関連測定値と比較する。
(a) 騒音と誤差
ロックイン増幅は直接増幅に比べて信号対雑音比が高くなりますが、この原稿全体で繰り返し強調されてきたように、あらゆるレベルでのノイズの導入を避ける必要があります。さらなる議論のために、我々は小さな電気信号42、43、44、45の測定を議論する文献を参照する。最先端のロックインアンプは、今日のデジタル信号処理に基づいていますが、アナログロックインアンプを使用してノイズを低減するほとんどの戦略は依然として適用されます。
要約すると、ケーブルはアンテナとして機能し、システムにノイズが発生しやすいことを念頭に置く必要があります。これは、強い電磁界がしばしば避けられないX線ナノプローブの環境において特に当てはまる。その結果、ケーブルはできるだけ短く保たれ、誘導されたノイズレベルが最小限に抑えられるように向きを変える必要があります。信号ケーブルの余分なシールドは、さらにノイズレベルを低下させる可能性があります。
DUTの適切な接触は騒音の最小化のために同様に重要である。小さい接触点が付いているきれいで、強い方法はワイヤー接着である。TF太陽電池の場合、これは常に接着の問題のために動作しません。あるいは、グラファイト、銅、アルミニウムに基づく導電性テープは、より大きなサンプルに適しています。多くの場合、最良の結果は、デバイスに薄い銅、金、またはプラチナワイヤに接触する銀塗料の手動適用で得られます。テープと黒鉛ペーストは最高の接触を与えないかもしれませんが、銀の塗料は簡単にデバイスを短絡することができ、細心の注意を払って堆積する必要があります。ポリイミドテープは、前面と背面の接触の短絡を防ぐために使用することができます。
接触から信号輸送までのケーブルレイアウトは、ビームライン固有の境界条件に適合する必要があります。たとえば、図 1に示すレイアウトで、事前に増幅された信号が LIA と V2F コンバータに分割されている場合、V2F コンバータがハッチの外側にある場合は危険です。この場合、プリアンプとV2Fコンバータの間の長いケーブルは、LIAに転送されるノイズをキャッチすることができます。したがって、XBIC または XBIV 測定の共通信号経路の 3 つのケースを区別します。
ケース A: XBIC はプリアンプで測定され、DC/AC 信号は図 1に示すように PA の後に分割されます。この場合、信号が常に正のようにPAに電流オフセットを適用することができ、2つの別々のV2Fコンバータを介して正と負の信号を記録する必要がないようにします。欠点として、これはLIAの利用可能な電圧受け入れ範囲を減少させ、感度の低下につながる。
ケースB:LIAへの入力のみであるプリアンプ化信号の分割を回避し、最大値(つまり変調周波数にロックしない)で低パスフィルタを使用してLIAで追加の復調器を使用することができます。予備増幅信号は、図6A、Eに示すようにDAQユニットに効果的に出力することができる。この場合、出力の電圧オフセットを AC 信号と DC 信号の両方に適用できるため、2 つの別個の V2F コンバータを介して正と負の信号を記録する必要がないようにします。これは、V2Fの利用可能な周波数範囲の減少を除いて、大きな欠点を持っていません。
ケースC:XBIVを測定し、DC/AC信号をDUTとロックインアンプの間で分割します。この場合、DUTに不要なバイアス電圧を印加せずにDC信号の電圧オフセットを適用することはできません。
すべての場合において、信号の負と正の部分が2つの異なるV2Fコンバータを介して記録される場合、XBICまたはXBIV信号の合計は正チャネルと負チャネルの差として得られます。2つ以上の復量器を備えたLIAが利用可能な場合、我々は通常、生信号の配線を最小限に抑え、XBICとXBIV測定の間で簡単に切り替えが可能なため、ケースBを好みます。
XBIC測定の誤差は、ここでエラー定量化ができないよう、使用する機器や設定に大きく依存します。絶対誤差は、実験的および体系的なエラーのために予想されるよりも高くなります。これは、XBIC 信号がプロトコルで説明されているように定数でスケーリングすることによって、収集効率を充電するように変換される場合に特に当てはまります。例えば、α(Eq.4参照)によって記述されたバンドギャップとイオン化エネルギーとの経験的関係は、著しい散乱に苦しむ。フォトンフラックスの測定値は、多くの場合、10%未満の絶対誤差では使用できません。そしてDUTのナノスコピック構造はあまり知られていない。しかし、ロックイン増幅XBICおよびXBIV測定の強さは、マップ内または同等の測定値内の優れた相対的な精度にあることを強調します。
(b) スキャン速度
XRFやX線散乱などの光子検出に基づく多くの測定モードでは、最初の近似では、集録時間に応じて信号強度が直線的に増加し、それに応じて信号対雑音比が増加します。これは XBIC 測定では当てはまり、可能なスキャン速度のウィンドウはカウント統計ではなく、キャリアダイナミクスやデバイス構造などのより複雑な考慮事項によって決まります。
それにもかかわらず、ピクセルあたりの変調信号の多くの期間を持つ遅い測定は、通常、ロックイン増幅XBIC測定で最高の信号対雑音比を導き、後処理中の平滑化によるオーバーサンプリング(例えば、ビンや塗布による)測定時間が許せば、さらにノイズレベルを低減できます。ただし、スループットの考慮事項とは別に、(1) X線ビームによる劣化(以下のセクションを参照)、またはインシチュエーション中の環境誘発サンプルの変更など、測定速度に下限を設定できます。測定は、多くの場合、許容可能なドウェル時間を短縮します。(2)ステージの動きのサンプルドリフトと再現性は、特にナノスケールでの測定に限定することができます。(3)電磁ノイズレベルの変動は、より速い測定によって追い越される可能性があります。(4)フォトン計数測定は入射光子フラックスに容易に正規化することができるのに対し、XBIC信号(さらにはXBIV信号)は、インシデントフォトンフラックス28に対してある程度直線的であるに過ぎない。したがって、フォトンフラックスへの正規化は、フォトンフラックス変動による効果の一部のみを補正し、フラックスが変化している間にXBIC測定(マップや時系列など)を行うことを避ける必要があります。これは、XBIC マップ中にストレージ リングがいっぱいになった場合に特に問題になります。
XBIC測定速度が他の測定モード(セクション(d)を参照)によって支配されない場合、XBIC測定は通常、満足のいく信号対雑音比を提供する最大速度で測定されます。測定速度の上限は、以下の制約によって与えられます:(1)測定速度に対する基本的な上限はDUTの応答時間である。最終的に、応答時間は充電回収時間によって制限されます。ナノ秒またはマイクロ秒の範囲で電荷キャリア寿命を持つほとんどの薄膜太陽電池では、これは重要ではありませんが、数ミリ秒の寿命を持つ高品質の結晶シリコン太陽電池のために心に留めておく必要があります。しかしながら、静電容量効果は、測定速度を制限できるようにTF太陽電池の応答時間も増加させることができる。(2)X線ビームの調節に使用される回転チョッパーブレードは、上限速度制限を持っています。X線ビーム内の位置に応じて、ビームサイズはブレードの最小期間を定義する幅1mmまでです。チョッパーが真空中で作動する場合、回転周波数が制限されることはめったになく、場合によっては電子束周波数であっても一致する。しかし、真空中のこのような速度でのチョッパーの操作は、ほとんどのチョッパーが空気中で動作するのが困難です。この場合、回転速度は機械的振動によって制限され、最終的には音速よりも小さくする必要があるブレードの最も外側の部分の速度によって制限されます。私たちの経験では、チョッピング周波数は、空気中の〜7000 Hzに頻繁に制限されています。(3)多くの場合、PAの応答時間は測定速度の上限を設定する。図4に示すように、PAの高速立ち上がり時間は、チョッパーからの信号変調を変換するために必要とされる。大きな増幅では、最大100ミリ秒の立ち上がり時間を持つ低ノイズ電流アンプを使用し、このような立ち上がり時間では、チョッピング周波数を数Hzに制限することができ、数秒の所要時間を必要とします。したがって、最良の戦略は、多くの場合、チョッピング周波数に一致するより速い応答時間でPAによって低い増幅を選択することです。これは、事前増幅後の信号対雑音レベルの小さくなりますが、ロックイン増幅は高品質の変調信号を取得することがよくあります。
一例として、使用されるPAは、低ノイズ設定37であっても、μA/V範囲の増幅のために10 kHz以上の帯域幅を提供する。これにより、kHz範囲でのチョッピングと、スキャン周波数とチョッピング周波数の間のカットオフ周波数を持つローパスフィルタを使用して、100Hz範囲までの測定速度を測定できます。これらは、私たちがよく利用する測定条件です。
測定アーティファクトを避けるためには、増幅チェーンに沿って信号を解析することが非常に重要です:一方、LIAのローパスフィルタによる制限は、マップ内のラインアーティファクトとして容易に検出できます(複数のXBIC信号からスミアアウト)DUTおよびPAのシステム応答は、LIAに統合することができるスコープによる信号の検査を必要とします。
(c) ビームダメージ
X線ビーム誘発損傷は一般的な問題であり、生物学的試料からシリコン太陽電池および検出器46、47まで、多くのシステムで議論されている。無機半導体は一般に有機半導体や生体系に比べてX線照射に対してより堅牢ですが、薄膜太陽電池においてもX線ビームによる損傷が一般的です。具体的には、CdTe、CIGS29、ペロブスカイト18、有機吸収層を用いた太陽電池のX線ビーム誘導損傷を観察した。太陽電池のようなDUTの電子応答はppmレベル以下の欠陥濃度に敏感であり、電荷キャリアの組み換えは明らかな化学的損傷なしに性能に影響を与える。
したがって、一般に、ビーム損傷に対するDUTの感度をテストすることが必要である。実際には、実際のXBIC測定の前にDUTのX線ビーム誘導劣化を評価し、劣化効果の影響を最も受けない測定を可能にする条件を確立します。
X線ビームによる損傷に対処するための異なる戦略が存在するが、それらすべてに共通しているのは、性能の評価前に測定スポットで放射線量を減らすことを目指していることです。言い換えれば、「DUTの劣化よりも速く測定する」というパラダイムに従って劣化を上回ることを目的としています。戦略には、(1)短いドウェル時間を使用します。(2) ステップサイズを大きくし、測定分解能を低下させます。(3)減衰フィルターによりX線ビーム強度を下げる。ビームラインおよびDUTに応じて、異なるアプローチが選択されるか、またはその組み合わせが選択されてもよい。例えば、高速シャッターやフライスキャンモードが欠如している場合(1)、ゾーンプレートなど広角X線線プロファイルは、中央ビーム位置から遠く離れた著しい劣化につながる可能性があります。
幸いなことに、ほとんどの劣化メカニズムは、局所的に強化された電荷キャリアの組み換えにつながります。これにより、電荷キャリアの拡散長に対する劣化の悪影響が制限され、劣化した領域からさらに離れたXBIC測定はほとんど影響を受けません。その代わりに、分解メカニズムがDUTの局所的なシャントにつながる場合、さらなるXBIC測定が深刻に妨げられるであろう。堆積した放射線量を最小限に抑えるために、重要な測定は最初に新鮮な場所で行われるべきであり、その後、ビーム損傷に対してより無関心であるXRFのような光子空腹法を同じ場所で利用することができる。
(d) マルチモーダル測定
さらなる測定モードとのXBICの互換性は、同時に評価されたパラメータ23と電気性能の直接的なポイントバイポイント相関を可能にします。ここでは、XBIV、XRF、SAXS、WAXS、および XEOL 測定値との XBIC 測定値の組み合わせについて説明します。電子収率やホログラフィーなどのさらなる測定モードとの組み合わせは容易に想像できますが、これらのモードは一般的にスキャン測定の設定やモードと互換性がありません。
XBIC、XBIV、XRF、SAXS、WAXS、およびXEOLの同時測定のための検出器とサンプルの幾何学的配置が可能であっても、すべてのモードの同時評価を禁止する基本的かつ実用的な側面があります。
(1)太陽電池の状態は、XBIC(短絡)とXBIV(オープン回路)測定の同時測定を禁止する。XEOL48,49が電子孔対の放射組換わせを測定するように、太陽電池(XBIC)の測定電流は競争プロセスであろう。したがって、XEOL測定は通常、同時XBIV測定と互換性のあるオープン回路条件下で行われます。
(2) ビーム損傷がXBICまたはXBIV測定の問題である場合、XRFやXEOLなどの光子を必要としない場合があります。経験則として、ビーム損傷効果は電気(XBIC&XBIV)および光学(XEOL)性能で最初に見られ、電子欠陥による電荷キャリアの組み換えに敏感である。第2に、構造的損傷が発生し(SAXS&WAXSで見える)、続いてXRFで見える組成的修飾が行われます。
(3)X線ビームのチョッピングは、一般的にすべての測定モードと互換性がありますが、アーティファクトにつながる可能性があります:まず、ピクセルあたりの統合された光子フラックスは、1つの期間でチョッパーホイールを通過する統合されたフラックスによって異なります。この効果は、チョッピングと走査頻度の比率が小さいと大きくなります。第二に、チョッパーホイールとX線ビームとの相互作用は、散乱、回折、蛍光光子につながる可能性があります。第三に、統合されたフォトンフラックスは50%減少し、光子を飢えた測定モードでは特に重要です。
これらの考慮事項の結果として、理想的な測定スキームは、与えられたDUTと測定モードの優先順位付けに依存します。ただし、XBIC 用に最適化された測定から始めるのが賢明な場合がよくいます。ロックイン増幅 XBIV が必要な場合、通常は 2 回目のスキャンです。それ以外の場合は、チョッパーを取り外し、標準的なXBIVを含む他のすべての測定は、最も光子を必要とする時間を長くして行うことができます。理想的には、XRFデータはすべてのスキャン中に測定され、サンプルドリフトを考慮して後処理で画像登録が可能になります。
(e) ビーム誘導測定のための異なるプローブ
特定の長所と短所を持つDUTの空間的に分解された電気的性能の評価のためのX線ビームへの代替プローブがあります。したがって、XBICと電子ビーム誘導電流(EBIC)およびレーザービーム誘導電流(LBIC)を電子顕微鏡または光学セットアップで測定した定性的な比較を表2に示す。
レーザーによる電子孔ペア生成は、太陽電池の屋外操作に最も近い。しかし、LBICの空間分解能は、レーザーの波長によって根本的に制限される。EBIC測定は、通常、DUTとの電子ビームの相互作用半径によって制限される、より大きな空間分解能を提供します。EBIC測定の主な欠点は、表面感度であり、層スタックを介して、あるいはカプセル化されたデバイスでの吸収層の性能の評価を妨げます。さらに、非線形二次電子放出効果と組み合わせたDUTの不均一な表面は、多くの場合、歪んだEBIC結果につながります。対照的に、XBIC測定は、ほとんどの信号がバルク材料の深部で生成され、表面電荷効果が適切な接地によって軽減されるので、トポロジ的な変動にほとんど苦しまない。
3つのビーム誘導技術はすべて、電荷注入が非常に不均質であり、ビーム位置でピークを迎えるという共通点があります。その結果、過剰なキャリア濃度と電流密度が不均一に分布します。簡略化された図では、太陽電池の大部分は暗闇の中で動作し、小さなスポットは、焦点を合わせたビームの数百に達することができる高い射出レベルで動作します。射出レベルの分布は、ビームのサイズと形状だけでなく、射出のビームエネルギー、デバイススタック、および時間構造にも依存します。これまでのところ、X線ビームは連続ビームとして扱われており、マイクロ秒よりも遅い電荷キャリア収集プロセスに適しています。しかし、シンクロトロン源のX線は、ストレージリング充填パターンに応じて強度とパルス周波数を持つサブ100psパルスで構成されています。我々は、同等に遅いXBIC測定に充填パターンの影響に気づいていないが、短期的な注入レベルはそれに依存する。対照的に、X線の時間構造を利用することができます:時間分解されたXEOL21のために実証されているように、時間分解されたXBICまたはXBIV測定を想像したり、XBIC/XBIV信号を電子束周波数にロックすることができます。
不均一な注入レベルの結果の十分な議論はDUTの3D移動性および寿命との時間依存的な注入のレベルの畳み込みを含むすべての関連するビームおよび装置変数の完全な3Dシミュレーションを要求する。この原稿の範囲を超えています。しかし、すべてのビーム誘導電流および電圧測定では概念的には同じであり、EBIC50およびLBIC51測定の注入レベル依存性を議論する文献を参照する。
局所電荷注入の負の結果は、1太陽相当の強度を持つバイアス光の適用によって実験的に軽減され、ビーム誘発励起は、余分な電荷キャリアのごくわずかな量を追加します。実際には、この概念は、10 5から10 6の信号対雑音比に対応する最先端のロックインアンプで100-120 dBの動的予備によって技術的に制限されます。これはビームサイズに匹敵するサイズのデバイスでは十分ですが、マクロスコピックデバイスに関連するレベルでバイアスライトを適用することは許可されません。明らかな解決策は、サンプルサイズを小さくすることです。残念ながら、これは多くの場合、サンプルの境界線または接触点から数百マイクロメートルまでの電気的な境界線の影響によって制限されます。
また、XBIC測定の注入レベル依存性を利用できることに注意してください:EBICおよびLBICと同様に、X線ビーム強度を変化させることによって射出レベルシリーズを実行すると、支配的な組み換え機構と電荷に関する情報を明らかにすることができますキャリア拡散52、53。
結論として、X線の浸透深さと高い空間分解能を組み合わせることで、XBICは相対顕微鏡アプローチでTF太陽電池などの埋設構造を用いてDUTを研究する最も適した技術です。XBIC測定の相互作用半径は、通常、EBICの場合よりも小さく、空間分解能は電荷キャリアの拡散長によって制限されることがよくあります。XBIC測定の主な欠点は、X線ナノプローブの限られた可用性です。
The authors have nothing to disclose.
J.ガレヴォート、M.セイリッヒ、A.シュロップ、D.ブリュックナー、J.ヘーゲマン、K.スパイアーズ、T.ボーズ、ドイツのエレクトロネン・シンクロトロン(DESY)、A.Kolditz、J.シーベルス、J.フリュー、C.スロウ、T.ハンブルクPETRA III、DESYでのビームラインP06での測定をサポートします。M.ホルト、Z.カイ、M.チェルカラ、およびAnLのアドバンストフォトンソース(APS)でビームライン26-ID-Cでの測定をサポートするアルゴンヌ国立研究所(ANL)のV.ローズ。ESRFのビームラインID16Bでの測定をサポートする欧州放射光施設(ESRF)のD.サロモンとR.トゥクルー。ミアソレ・ハイテック社のR.ファルシチ、D.ポプラフキー、J.ベイリー、E.アバチーニ、Y.ロマニュク、S.ブッチェラー、A.ティワリは、太陽電池を提供するスイス連邦材料科学技術研究所(EMPA)から。我々は、ヘルムホルツ協会HGFのメンバーであるDESY(ハンブルク、ドイツ)が実験施設の提供を認める。我々は、欧州放射光施設(グルノーブル、フランス)が放射光施設の提供を認める。この研究は、アルゴンヌ国立研究所が運営する米国エネルギー省(DOE)科学ユーザー施設の先端光子源のリソースを使用しました。DE-AC02-06CH11357。
BNC cabling and connectors | From generall cable suppliers | ||
Chopper blade | Thorlabs | MC1F10HP | Apart from technical compatibility of the chopper wheel with the chopper system, it should be checked that the chopper blade sufficiently blocks the X-ray beam. |
Conductive silver paint | Conrad | 530042 | Alternative products can be obtained from Pelco and others |
Copper wires | From cable suppliers for contacting of the solar cell | ||
Current Preamplifier | Standford | SR570 | Alternatives include the Keithley 487 or 6487 Picoammeter. |
Device under test (DUT) | Suitable device for XBIC measurements. | ||
Holder with printed circuit board | Custom design | ||
Kinematic sample mount | Thorlabs | KB25/M | Optional, allows easy positioning and changing of sample. Alternatives include the M-BK-1A from Newport |
Lock-in Amplifier | Zurich Instruments | UHFLI or MFLI | Whereas the MFLI has current preamplifiers included, the UHFLI requires an external current preamplifier but offers more options. Therefore, the UHFLI was used for the presented experiment. |
Measurement control/data acquisition unit | Available at different synchrotrons. | ||
Optical Chopper | Thorlabs | MC2000B(-EC) | Alternatives include the choppers SR540 from Stanford Research Systems, or model 3502 from Newport. |
Polyimide tape | Rolls with different widths and thicknesses are available | ||
X-ray source | Available at different synchrotrons |