Bu protokolün amacı, canlı hücrelerdeki yüzey reseptör dinamiklerini dört boyutlu olarak görselleştirmek için Kafes Işık Sayfası Mikroskobu’nun nasıl kullanılacağını göstermektir. Burada CD4+ primer T hücrelerindeki T hücre reseptörleri gösterilmiştir.
Bir hücrenin sinyalizasyonu ve işlevi, yüzey reseptörlerinin dinamik yapıları ve etkileşimleri tarafından belirlenir. Bu reseptörlerin yerinde ki yapı-fonksiyon ilişkisini gerçekten anlamak için, onları canlı hücre yüzeyinde yeterli spatiotemporal çözünürlükle görselleştirmemiz ve izlememiz gerekir. Burada nasıl görüntü T-hücre reseptörleri (TDR) dört boyutlu (4D, uzay ve zaman) canlı hücre zarında son zamanlarda geliştirilen Kafes Işık-Sheet Mikroskobu (LLSM) nasıl kullanılacağını göstermektedir. T hücreleri adaptif bağışıklık sisteminin ana efektör hücrelerinden biridir, ve burada bu hücrelerin sinyalve fonksiyonu Tcr dinamikleri ve etkileşimleri tarafından tahrik olduğunu göstermek için bir örnek olarak T hücrelerikullanılır. LLSM, benzeri görülmemiş spatiotemporal çözünürlükte 4D görüntülemeye olanak tanır. Bu nedenle bu mikroskopi tekniği genellikle biyolojide farklı hücrelerden çok çeşitli yüzey veya hücre içi moleküllere uygulanabilir.
Üç boyutlu hücre yüzeyinde gerçek zamanlı olarak yayılan ve yayılan moleküllerin hassas dinamikleri çözülmesi gereken bir muamma olmuştur. Mikroskopi her zaman hız, hassasiyet ve çözünürlük dengesi olmuştur; herhangi bir veya iki maksimize edilirse, üçüncü en aza indirilir. Bu nedenle, yüzey reseptörlerinin hareket ettiği küçük boyut ve muazzam hız nedeniyle, dinamiklerinin izlenmesi hücre biyolojisi alanında önemli bir teknolojik zorluk olmaya devam etmiştir. Örneğin, birçok çalışma toplam iç yansıma floresansı kullanılarak yapılmıştır (TIRF) mikroskopi1,2,3, yüksek zamansal çözünürlüğe sahiptir, ancak sadece T-hücre zarının çok ince bir dilimigörüntü olabilir (~100 nm), ve bu nedenle hücrede daha uzakta oluyor olayları özlüyor. Bu TIRF görüntüleri de sadece hücrenin iki boyutlu bir bölümünü gösteriyor. Buna karşılık, süper çözünürlüklü teknikler, örneğin stokastik optik rekonstrüksiyon mikroskopisi (STORM)4, fotoaktive lokalizasyon mikroskopisi (PALM)5, ve uyarılmış emisyon tükenmesi mikroskopisi (STED)6, Abbe kırınım sınırının üstesinden gelebilir. Bu teknikler yüksek uzamsal çözünürlüğe sahip (~20 nm çözünürlük)4,5,6,7, ama genellikle tam iki boyutlu (2D) veya üç boyutlu (3D) görüntü elde etmek için birkaç dakika sürer, ve bu nedenle zamansal çözünürlük kaybolur. Buna ek olarak, yanıp sönen sinyallere dayanan STORM ve PALM gibi tekniklerde8,9saymada yanlışlıklar olabilir. Elektron mikroskobu açık ara en yüksek çözünürlüğe sahiptir (en fazla 50 pm çözünürlük)10; hatta 3 nm XY ve 500 nm Z çözünürlüğü11’ekadar sonuçlanan odaklanmış iyon ışını taramalı elektron mikroskobu (FIB-SEM) ile üç boyutlu olarak yapılabilir. Ancak, elektron mikroskobu herhangi bir form sert örnek hazırlanması gerektirir ve sadece sabit hücreleri veya dokuları ile yapılabilir, zaman içinde canlı örnekleri görüntüleme olasılığını ortadan kaldırarak.
Gerçek fizyolojik 3D doğacanlı hücrelerde yüzey ve hücre içi moleküllerin dinamiklerini belirlemek için gerekli yüksek spatiotemporal çözünürlük elde etmek için teknikler sadece son zamanlarda geliştirilmiştir. Bu tekniklerden biri kafes Işık-Levha Mikroskobu (LLSM)12, büyük ölçüde daha düşük photobleaching için yapılandırılmış bir ışık levha kullanır. Nobel Ödüllü Eric Betzig tarafından 2014 yılında geliştirilen, yüksek eksenel çözünürlük, düşük fotobeyazrlama ve arka plan gürültüsü, ve aynı anda görüş alanı başına yüzlerce uçak görüntü lls mikroskoplar geniş alan, TIRF ve konfokal mikroskoplar12,13,14,15,16,17,18,19. Bu dört boyutlu (x, y, z ve zaman) görüntüleme tekniği, hala kırınım sınırlı iken (~ 200 nm XYZ çözünürlük), inanılmaz zamansal çözünürlüğe sahiptir (biz yaklaşık 100 fps bir kare hızı elde ettik, çerçeve başına 0.85 saniye ile 3D yeniden hücre görüntüsü sonuçlanan) 3D mekansal edinim için.
LLSM genellikle tek moleküllü ve tek hücre düzeyinde herhangi bir hücre içinde herhangi bir molekülün gerçek zamanlı dinamikleri izlemek için kullanılabilir, bağışıklık hücreleri gibi son derece hareketli hücrelerde özellikle. Örneğin, Burada T-hücre reseptör (TCR) dinamiklerini görselleştirmek için LLSM nasıl kullanılacağını gösteriyoruz. T hücreleri adaptif bağışıklık sisteminin efektör hücreleridir. TC’ler, bir T hücresinin seçimini, gelişimini, farklılaşmasını, kaderini ve işlevini belirleyen antijen sunan hücrelerin (APC) yüzeyinde görüntülenen peptid-MHC (pMHC) ligandlarını tanımaktan sorumludur. Bu tanıma T hücreleri ve AAP’ler arasındaki arabirimde meydana gelir, immünolojik sinaps denilen oluşturmak için lokalize reseptör kümeleme ile sonuçlanan. İmmünolojik sinapstaki TCR’lerin T-hücre efektörü fonksiyonu için zorunlu olduğu bilinmekle birlikte, sinapsa gerçek zamanlı TCR ticaretinin altında yatan mekanizmalar hala bilinmemektedir. LLSM, ortaya çıkan pMHC-TCR etkileşimi ile sinapsa ticareti öncesi ve sonrası TCR’lerin dinamiklerini gerçek zamanlı olarak görselleştirmemizi sağlamıştır (Şekil 1). LLSM bu nedenle TT’lerin biçimlendirici dinamiklerinin güncel sorularını çözmek ve bir hücrenin benlik ve yabancı antijenleri nasıl ayırt oluşturduğunu anlamak için içgörüler sağlamak için kullanılabilir.
Sunulan protokol 5C’den izole edilen CD4+ T hücrelerinin kullanımı için optimize edilmiştir. Kullanılan LLSM cihazındaki C7 transgenik farelerin ve bu nedenle diğer hücre sistemlerinin ve LLSM’lerin farklı şekilde optimize edilmesi gerekebilir. Ancak, bu protokol 4D görüntülemenin gücünü gösterir, çünkü tüm hücredeki bir yüzey reseptörünün dinamiklerini fizyolojik koşullarda en az bozulmaile ölçmek için kullanılabilir. Bu nedenle, bu tekniğin birçok olası gelecekteki uygulama…
The authors have nothing to disclose.
Chicago Üniversitesi’nden Dr. Vytas Bindokas’ın tavsiye ve rehberliğini kabul etmek istiyoruz. Kafes ışık levhamikroskobunu destekleyip koruduğu için Chicago Üniversitesi’ndeki Entegre Işık Mikroskobu Çekirdek Tesisi’ne teşekkür ederiz. Bu çalışma NIH Yeni Yenilikçi Ödülü 1DP2AI144245 ve NSF Kariyer Ödülü 1653782 (To J.H.) tarafından desteklenmiştir. J.R. NSF Lisansüstü Araştırma Bursprogramı tarafından desteklenir.
1 mL Syringe | BD | 309659 | For T cell harvest |
2-Mercaptoethanol | Sigma-Aldrich | M3148-25ML | For T cell culture |
5 mm round coverslips | World Precision Instruments | 502040 | For Imaging |
70um Sterile Cell Strainer | Corning | 7201431 | For T cell harvest |
Alexa Fluor 488 anti-mouse TCR β chain Antibody | BioLegend | 109215 | For Imaging |
Fetal Bovine Serum (FBS) | X&Y Cell Culture | FBS-500 | For T cell culture |
Ficoll | GE Healthcare | 17-1440-02 | Denisty gradient reagent for T cell harvest |
Fluorescein sodium salt | Sigma-Aldrich | F6377 | For microscope alignment |
FluoSpheres Carboxylate-Modified Microspheres | Thermo Fisher Scientific | F8810 | For microscope alignment |
Imaris | Bitplane | N/A | Tracking Software; Other options for tracking software include Amira or Trackmate (Fiji). |
Lattice Light-Sheet Microscope | 3i | N/A | Microscope Used |
Leibovitz's L-15 Medium, no phenol red | Thermo Fisher Scientific | 21083027 | For Imaging |
L-Glutamine | Thermo Fisher Scientific | 25030-081 | For T cell culture |
LLSpy | Janelia Research Campus | N/A | LLSpy was used under license from Howard Hughes Medical Institute, Janelia Research Campus. Contact innovation@janelia.hhmi.org for access. Other deconvolution and deksewing methods are available in image processing softwares such as Fiji, Slidebook, Amira, and others. https://llspy.readthedocs.io/en/latest/ |
Moth Cytochrome C (MCC), sequence ANERADLIAYLKQATK | Elimbio | Custom Synthesis | For T cell harvest |
Penacillin/Streptamycin | Life Technologies | 15140122_3683884612 | For T cell culture |
Poly-L-Lysine | Phenix Research Products | P8920-100ML | For Imaging |
RBC Lysis Buffer | eBioscience | 00-4300-54 | For T cell harvest |
Recombinant mouse IL-2 | Sigma-Aldrich | I0523 | For T cell culture |
RPMI 1640 Medium | Corning | MT10040CV | For T cell culture |
Slidebook | 3i | N/A | LLSM imaging software |
Surgical Dissection Tools | Nova-Tech International | DSET10 | For T cell harvest |
T-25 Flasks | Eppendorf | 2231710126 | For T cell culture |
Thermo Scientific Pierce Fab Micro Preparation Kits | Thermo Fisher Scientific | 44685 | For preparing Fab |