Cet article contient un ensemble de protocoles pour le développement des réseaux de cardiomyocytes pluripotents induits par l’homme (hiPSC-CM) cultivés sur des plaques MEA multiwell pour électroporater réversiblement la membrane cellulaire pour des mesures potentielles d’action. Les enregistrements à haut débit sont obtenus à partir des mêmes sites cellulaires à plusieurs reprises au cours des jours.
Le dépistage de l’innocuité cardiaque est d’une importance primordiale pour la découverte de médicaments et la thérapeutique. Par conséquent, le développement de nouvelles approches électrophysiologiques à haut débit pour les préparations de cardiomyocytes dérivés de hiPSC (hiPSC-CM) est très nécessaire pour un dépistage efficace des drogues. Bien que des réseaux multiélectrodes (MeA) soient fréquemment utilisés pour des mesures potentielles sur le terrain de cellules excitables, une publication récente de Joshi-Mukherjee et de ses collègues a décrit et validé son application pour des enregistrements à potentiel d’action récurrent (AP). de la même préparation hiPSC-CM pendant des jours. L’objectif ici est de fournir des méthodes détaillées étape par étape pour l’ensemencement des MM et pour mesurer les formes d’ondes AP par électroporation avec une haute précision et une résolution temporelle de 1 ‘s. Cette approche répond à l’absence de méthodologie facile à utiliser pour obtenir un accès intracellulaire pour des mesures AP à haut débit pour des études électrophysiologiques fiables. Un flux de travail détaillé et des méthodes pour le placage des hiPSC-CM sur les plaques MEA multiwell sont discutés en mettant l’accent sur les étapes critiques, le cas échéant. En outre, un script MATLAB sur mesure pour la manipulation rapide des données, l’extraction et l’analyse est signalé pour une étude approfondie de l’analyse des formes d’ondes afin de quantifier les différences subtiles dans la morphologie pour divers paramètres de durée AP impliqués dans arythmie et cardiotoxicité.
Les cardiomyocytes pluripotents induits par l’homme (hiPSC-CM) sont l’étalon-or d’un nombre croissant de laboratoires1,2,3,4,5,6 ,7,8,9,10. Battre les corps embryonnaires11,12,13 et monocouches3,7,10,11,12, 13,14,15,16,17 la différenciation sont les méthodes préférées pour la production de cardiomyocytes et le tableau multiélectrode (MEA) est devenu une modalité commune pour le suivi de l’électrodynamique de ces réseaux18,19,20. Alors que les paramètres qui peuvent être extraits des potentiels de champ (PF) tels que le taux de battement, l’amplitude, la durée et les intervalles RR sont des réponses électrophysiologiques de base de battre spontanément monocouches18,21, 22,23, les composants du potentiel d’action (AP) sous-jacents à ces signaux FP extracellulaires sont difficiles à extrapoler24. Notre publication récente sur la découverte d’une application des AEM pour des mesures AP récurrentes directes fournit une preuve de méthodologie pour les relectures AP intracellulaires exemplaires avec une analyse approfondie des formes d’onde à diverses phases de repolarisation à travers plusieurs lots de réseaux de cardiomyocytes dérivés de hiPSC3. Dans l’étude, nous avons démontré que la livraison d’impulsions électroporating aux réseaux de cardiomyocytes dérivés de hiPSC permet l’accès intracellulaire pour des enregistrements ap. Ces enregistrements AP transitoires dépendent des récupérations potentielles transmembranaires observées par le site de blessures3,25,26. Les formes d’ondes enregistrées via MEA et patch-clamp dans notre étude ont montré des morphologies AP similaires validant ainsi la fiabilité de l’approche3.
Quelques laboratoires ont rapporté mesurer des APs de diverses cellules électrogéniques utilisant les MEAs sur mesure18,21,26,27,28,29, 30, mais la fiabilité de l’utilisation des AME pour des mesures AP cohérentes et récurrentes n’a pas été évaluée. À l’heure actuelle, la technique de la pince à patch de l’étalon-or est limitée aux enregistrements terminaux7,31 alors que les mesures AP basées sur le MEA sont transitoires et peuvent donc être effectuées plusieurs fois sur la même cellule. Nous montrons également que l’on peut facilement enregistrer des signaux AP de haute qualité dans la gamme millivolt nécessitant un minimum de filtrage. Les chercheurs peuvent donc mener non seulement des études de médicaments aigus mais aussi chroniques dans les mêmes préparations à l’aide d’EAM. De plus, cette technologie permet de mesurer simultanément le FP/AP générant des bibliothèques d’électrobiome en peu de temps. Compte tenu de l’accent croissant sur la prédiction de l’arythmie et la cardiotoxicité associée aux médicaments24,32,33,34,35, l’intégration de la mesure AP amélioreront l’innocuité et l’efficacité des médicaments.
Ici, nous présentons des protocoles pour 1) pré-placage des hiPSC-CM cryoconservés pour la maturation, 2) la dissociation et le placage des hiPSC-CM sur les eMÉ multiwell, 3) l’enregistrement des FP et des AP des réseaux hiPSC-CM, 4) la segmentation et l’extraction des données aux fins d’analyse, et 5) restaurer les tableaux pour une réutilisation multiple. Chaque étape a été optimisée en mettant l’accent sur les étapes critiques, le cas échéant. Les exigences pour l’attachement cellulaire pour assurer un monocouche syncytial de battement sont discutées et des procédures pour la restauration de MEA multiwell pour des études électrophysiologiques répétitives sont expliquées. Enfin, une interface graphique personnalisée développée en laboratoire est présentée pour l’extraction du signal AP, l’assurance de la qualité et le flux de travail de segmentation afin de quantifier et d’analyser les paramètres AP.
Au fil des ans, l’application des EMA s’est limitée à effectuer des mesures FP de cellules excitables pour étudier leurs propriétés électrophysiologiques36,37,38,39. Seuls quelques groupes ont signalé des traces AP de cellules électrogéniques en utilisant la technologie personnalisée meAbasée 18,29,30. Cependant, ces approches n’ont pas été étudiées pour les enregistrements répétés des mêmes préparations. Nous avons développé une méthodologie innovante et précise pour l’étude des AP à partir du même site cellulaire sur plusieurs jours dans plusieurs réseaux hiPSC-CM simultanément3. Dans notre étude publiée, une plate-forme MEA multi-puits micro-or a été utilisée pour générer des bibliothèques de forme d’onde AP à partir de plusieurs lots de cultures hiPSC-CM avec une grande précision et avec une résolution temporelle de 1 ‘s. Le protocole décrit ici explique l’ensemencement des hiPSC-CM sur le tableau pour le développement efficace des réseaux CM syncytial pour les enregistrements AP à haut débit. Plusieurs étapes critiques du protocole sont : 1) la production de plusieurs lots de haute pureté de CM contrôlés de qualité pour les opérations bancaires de cryoconservation, 2) les CM post-dégel hautement viables pour le pré-plaquage et la maturation, 3) le traitement de la plaque MEA multiwell pour CM l’ensemencement, 4) la dissociation de culture hiPSC-CM à 30 jours après la différenciation pour le placage meA, et 5) la restauration des MEA pour la réutilisation multiple.
Il est important de noter que la variation de lot à lot dans la différenciation hiPSC pourrait affecter les résultats expérimentaux. La méthode monocouche de différenciation a été optimisée en interne pour la production de cardiomyocytes pour centélevé 3,40. L’analyse FACS des marqueurs MLC2v et TNNT2 de nos cultures démontre un phénotype ventriculaire de 90 %3. Ces cultures contrôlées par la qualité sont cryoconservées pour des études expérimentales. Les approches actuelles de différenciation donnent un mélange hétérogène de cellules nodales, auriculaires et ventriculaires3,16,17,41. Par conséquent, les stratégies employées pour l’enrichissement de population de sous-type de CM peuvent encore améliorer la spécificité des cultures. En outre, des approches d’ingénierie tissulaire peuvent être employées pour améliorer leur maturation. Les méthodes proposées ici peuvent facilement être mises en œuvre pour d’autres sources CM.
Les formes d’ondes AP enregistrées à l’aide de MEA étaient similaires à celles enregistrées à partir de réseaux de cardiomyocytes par cartographie optique42,43, oxyde métallique complémentaire à base de semi-conducteurs MEA18,21, et simulé AP en utilisant des enregistrements FP20. Pour aborder le mécanisme des mesures AP par l’intermédiaire de MEA Hai et Spira25 a démontré que l’interface électropore-électrode imite la technique établie de microélectrode de verre pointu. Cependant, le potentiel de la membrane au repos et les vraies valeurs d’amplitude de notre étude ne peuvent pas être établis étant donné que l’interface électropore-électrode dans les systèmes MEA n’est pas calibrée, et que l’amplitude est fonction de la sensibilité et de la résolution de la technique. Notre approche partage des limites similaires à la cartographie optique quand il s’agit de l’amplitude AP.
Les suites de FP/AP multiwell basées sur le MEA ont fait état ici de nouvelles possibilités d’évaluation de l’innocuité des médicaments. Bien que spontanés, ces monocouches hiPSC-CM battent à des rythmes constants. L’analyse des paramètres de la DPA sur plusieurs réseaux donne un aperçu de l’hétérogénéité électrique (figure 13). Cependant, les analyses complètes de restitution d’APD doivent incorporer les intervalles diastoliques précédents. De plus, les formes d’ondes AP de haute qualité enregistrées à partir du même site cellulaire à plus de 96 h (figure 11B) est le premier rapport à suivre l’électrodynamique membranaire au fil du temps qui sera utile dans le développement et dans la maladie.
Le protocole décrit ici pour quantifier les paramètres AP peut être utilisé pour générer des courbes dose-réponse pour tester des composés. Comme récemment rapporté par Edwards et coll.3, la réponse dose de noradrénaline, d’isoproténol et d’E 4031 est tracée pour la DPA à diverses phases de repolarisation. L’étude publiée a démontré l’exactitude et la fiabilité de l’approche pour l’identification des changements subtils dépendants de la dose dans les formes d’ondes AP en temps réel. Cette technique pourrait facilement être étendue pour d’autres composés ou bibliothèques de petites molécules pour comprendre diverses réponses électrophysiologiques.
L’approche meA basée pour les mesures AP présentées dans cette étude sera d’intérêt non seulement pour les électrophysiologistes, mais aussi pour les biologistes cellulaires et les modélisateurs in-silico. De plus, les enregistrements FP/AP provenant du même site cellulaire sur les hiPSC-MC permettront aux chercheurs de générer des bibliothèques de données bioélectriques d’un large éventail de réseaux cellulaires excitables dans un court laps de temps. La disponibilité de ces ressources sera précieuse pour la découverte de médicaments et la modélisation des maladies.
The authors have nothing to disclose.
aucun
Accutase | Sigma Aldrich | A6964-100ML | cell dissociation solution |
Acquisition software | Multichannel Systems | Multiwell-Screen v 1.9.2.0 | |
B27 Supplement | ThermoFisher | 17504-044 | CM media supplement |
Converter software | Multichannel Systems | MultiChannel DataManager | |
DMEM/F12 | ThermoFisher | 11330-032 | |
D-PBS | ThermoFisher | 14190-250 | |
FBS | Fisher Scientific | SH3007103HI | |
Fibronectin | Sigma Aldrich | F1141-5MG | |
Geltrex | ThermoFisher | A1413202 | coating substrate |
Interface board | Multichannel Systems | MCS-IFB 3.0 Multiboot Interface Board | |
Multiwell MEA Plate | Multichannel Systems | 24W300/30G-288 | |
RPMI 1640 | ThermoFisher | 11875-093 | CM base medium |
Terg-a-zyme | Sigma Aldrich | Z273287-1EA | enzymatic detergent |
Transfer pipettes, individually wrapped | Fisher Scientific | 1371148 | |
Trypan Blue | Sigma Aldrich | T8154-100ML | |
Ultrapure sterile water | ThermoFisher | 10977-023 | |
6-well tissue-culture treated plates | Fisher Scientific | 08-772-1B |