ここで提供されるプロトコルは、異なる組織および脳の様々な領域から分離されたミトコンドリアを有する異なるペプチドおよびタンパク質のネイティブ形態、プレフィブリル、および成熟したアミロイド線維の相互作用を調るためのプロトコルである。
ミトコンドリアなどの内部膜を含む膜透過性は、神経変性疾患におけるアミロイド凝集体誘発毒性の一般的な特徴および一次機構であることを示す証拠の増加体。しかし、膜破壊のメカニズムを説明するほとんどの報告はリン脂質モデルシステムに基づいており、生体膜レベルで発生する事象を直接標的とする研究はまれである。ここで説明するアミロイド毒性のメカニズムを膜レベルで研究するためのモデルである。ミトコンドリア単離のために、密度勾配媒体は、最小限のミエリン汚染で調製物を得るために使用されます。ミトコンドリア膜完全性確認後、α-シヌクレイン、ウシインスリン、および鶏卵白リゾザイム(HEWL)から生じるアミロイド線維の相互作用をラット脳ミトコンドリアと、インビトロ生物学的モデルとして調べた。結果は、線維アセンブリを有する脳ミトコンドリアの治療が異なる程度の膜透過性およびROS含有量増強を引き起こす可能性があることを示している。これは、アミロイド線維とミトコンドリア膜との間の構造依存的相互作用を示す。アミロイド線維の生物物理学的特性とミトコンドリア膜への特異的結合は、これらの観察の一部について説明を提供してもよいことが示唆される。
アミロイド関連障害は、アミロイドードとして知られており、異なる組織および器官における不溶性タンパク質沈着物の出現によって定義される疾患の大きなグループを構成する1、2。中でも、神経変性疾患は、タンパク質凝集体が中枢または末梢神経系2に現れる最も頻繁な形態である。アミロイド凝集体3の毒性に関与するメカニズムの数が提案されているが、アミロイド病理4の主なメカニズムとして細胞膜破壊および透過性を指摘する証拠の増大するボディは、 5.血漿膜に加えて、内部オルガネラ(すなわち、ミトコンドリア)も影響を受ける可能性があります。
興味深いことに、新しい証拠は、ミトコンドリア機能障害がアルツハイマー病およびパーキンソン病6、7を含む神経変性疾患の病因において重要な役割を果たしていることを示唆している。この問題に関連して、多くの報告は、ミトコンドリア8、9、10にアミロイドβ-ペプチド、α-シヌクレイン、ハンチンチン、およびALS連結変異体SOD1タンパク質の結合と蓄積を示しています。11.アミロイド凝集体による膜透過化のメカニズムは、離散チャネル(細孔)の形成または非特異的洗剤様機構5,12を介して起こると考えられている。 13.これらの結論のほとんどは、リン脂質モデルシステムに関する報告に基づいており、生体膜で起こる事象を直接標的とする研究はまれである。明らかに、これらの人工脂質二重層は、異種構造であり、多種多様なリン脂質およびタンパク質で構成されるミトコンドリアを含む生体膜の本質的特性を必ずしも反映していない。
本研究では、ラット脳から単離されたミトコンドリアをインビトロ生物学的モデルとして用い、α-シヌクレイン(アミロイド原性タンパク質として)、ウシインスリン(モデルペプチドとして)から生じるアミロイド線維の破壊効果を調べる。注射局所的アミロイドーシスに関与するヒトインスリンとの重要な構造相同性、および鶏卵白リソザイム(HEWL;アミロイド凝集の研究のための共通モデルタンパク質として)。アミロイド線維によって誘導されるミトコンドリア膜の相互作用と損傷の可能性は、ミトコンドリアマレートデヒドロゲナーゼ(MDH)(ミトコンドリアマトリックス内に位置する)およびミトコンドリア活性酸素の放出を観察することによって調べられた。種(ROS)の強化。
豊富な実験結果は、フィブリル凝集体の細胞毒性が生体膜4、5と相互作用し透過する能力と有意に関連しているという仮説を支持する。しかし、データのほとんどは、リン脂質およびタンパク質の多種多様な異種構造である生体膜の本質的特性を必ずしも反映しない人工脂質二層層に基づいています。ここで、脳ミトコンドリアをインビトロ生体膜…
The authors have nothing to disclose.
この研究は、イランのザンジャン基礎科学研究所(IASBS)の助成を受けました。
2′,7′-Dichlorodihydrofluorescein diacetate | Sigma | 35845 | |
Ammonium sulfate | Merck | 1012171000 | |
Black 96-well plate | Corning | ||
Black Clear-bottomed 96-well plate | Corning | ||
Bovine insulin | Sigma | I6634 | |
Bovine Serum Albumin (BSA) | Sigma | A2153 | |
BSA essentially fatty acid-free | Sigma | A6003 | |
Centrifuge | Sigma | ||
Crystal clear sealing tape | Corning | ||
CuSO4 | Sigma | 451657 | |
Dialysis bag (cut off 2 KDa) | Sigma | D2272 | |
Dounce homogenizer | Potter Elvehjem | ||
EDTA | Sigma | E9884 | |
Fluorescence plate reader | BioTek | ||
Fluorescence spectrophotometer | Cary Eclipse VARIAN | ||
Folin | Merck | F9252 | |
Glycine | Sigma | G7126 | |
Guillotine | Made in Iran | ||
HCl | Merck | H1758 | |
Hen Egg White Lysozyme (HEWL) | Sigma | L6876 | |
Na2CO3 | Sigma | S7795 | |
NaH2PO4 | Sigma | S7907 | |
NaOH | Merck | S8045 | |
Oxaloacetate | Sigma | O4126 | |
Percoll | GE Healthcare | ||
Phosphate Buffer Saline (PBS) | Sigma | CS0030 | |
PMSF | Sigma | P7626 | |
Potassium sodium tartrate | Sigma | 217255 | |
Quartz cuvette | Sigma | ||
Spectrophotometer | analytik jena | SPEKOL 2000 model | |
Succinate | Sigma | S2378 | |
Sucrose | Merck | 1076871000 | |
Thermomixer | Eppendorph | ||
Thioflavin T | Sigma | T3516 | |
Tris-HCl | Merck | 1082191000 | |
Triton X-100 | Sigma | T9284 | |
Tryptone | QUELAB | ||
Water bath | Memmert | ||
Yeast Extract | QUELAB | ||
β-NADH | Sigma | N8129 |