Представляем полезный для крупномасштабного ферментативного синтеза и очистки специфических энантиомеров и региоисомеров эпоксидов арахидоновой кислоты (АА), докозагексаеновой кислоты (ДГК) и эйкозапентаеновой кислоты (ЭПК) с использованием бактериального цитохрома Фермент P450 (BM3).
Эпоксидированные метаболиты различных полиненасыщенных жирных кислот (ПУФА), именуемые эпоксидными жирными кислотами, играют широкий спектр ролей в физиологии человека. Эти метаболиты производятся эндогенно цитохромом класса P450 ферментов. Из-за их разнообразных и мощных биологических эффектов, существует значительный интерес к изучению этих метаболитов. Определение уникальной роли этих метаболитов в организме является трудной задачей, так как эпоксидные жирные кислоты сначала должны быть получены в значительных количествах и с высокой чистотой. Получение соединений из природных источников часто является трудоемким, а растворимые эпоксидные гидролазы (sEH) быстро гидролизуются метаболиты. С другой стороны, получение этих метаболитов с помощью химических реакций является очень неэффективным, из-за трудностей получения чистых региоисомеров и энантиомеров, низких урожаев и обширной (и дорогостоящей) очистки. Здесь мы представляем эффективный ферментатическийсинтез 19 (S), 20 ( R)- и 16 (S), 17 (R)-эпоксидокосапентаевские кислоты (EDPs) из ДГК через эпоксидацию с BM3, бактериальный фермент CYP450, изолированный первоначально из Bacillus megaterium (что легко выражается в Escherichia coli). Характеристика и определение чистоты осуществляется с помощью ядерной магнитно-резонансной спектроскопии (ЯМР), высокопроизводительной жидкой хроматографии (HPLC) и масс-спектрометрии (МС). Эта процедура иллюстрирует преимущества ферментативного синтеза эпоксидных метаболитов PUFA, и применима к эпоксидации других жирных кислот, включая арахидоновая кислота (АА) и eicosapentaenoic кислоты (EPA) для производства аналогичных эпоксикозасатрино кислоты (EET) и эпоксикозатетененоии кислоты (EE), соответственно.
Поскольку интерес к роли, которую полиненасыщенные жирные кислоты (в частности, омега-3 и омега-6 полиненасыщенные жирные кислоты) играют в биологии человека, в последние годы вырос интерес, исследователи обратили внимание на широкий спектр привлекательных преимуществ, которые их метаболиты Выставка. В частности, значительной точкой внимания были метаболиты эпоксидной жирной кислоты, вырабатываемые цитохромом класса P450. Например, многие эпоксидные паоксиды PUFA, в том числе эпоксикозатриноиновые кислоты (EET), эпоксидокозапентаеновые кислоты (EDPs) и эпоксикозатететрееновые кислоты (Экэ), играют важную роль в регуляции артериального давления и воспаления1,2 , 3 , 4 , 5. Интересно, что конкретные энантиомеры и региоисомеры АА и ЭПК эпоксиды, как известно, имеют различное влияние на сосудосуживание6,7. В то время как физиологические эффекты энантиомеры и региоизомы EETs и EE’s были задокументированы, мало что известно о влиянии аналогичных эпоксидокосапентаевных кислот (ЭДП), образованных из ДГК. Широкое использование рыбьего жира8, который богат как EPA и ДГК, также вызвал интерес к EDPs9. Преимущества этих добавок, как полагают, отчасти из-за вниз по течению ДГК метаболитов (16,17-EDP и 19,20-EDP является наиболее распространенным), потому что в ививо уровни EDPs координировать очень хорошо с количеством ДГК в диете10, 11.
Изучение механизмов и целей этих эпоксидных жирных кислот метаболомией, химической биологией и другими методами оказалось сложным, отчасти потому, что они существуют как смеси реджио- и стерео-изомеров, и метод получения чистого количества enantiomers и regioisomers не требуется. Обычные средства для химического синтеза этих соединений оказались неэффективными. Использование пероксикислот, таких как мета-хлоропероксибензоиновая кислота для эпоксидации, имеет много недостатков, в частности, отсутствие селективности эпоксидации, что требует дорогостоящей и кропотливой очистки отдельных региоизомеров и энантиомеров. Тотальный синтез метаболитов ДГК и ЭПК возможен, но также страдает от недостатков, которые делают его нецелесообразным для крупномасштабного синтеза, таких как высокие затраты и низкие урожаи12,13. Эффективное общее производство может быть достигнуто с помощью ферментативного синтеза, так как ферментативные реакции режио- и стереоселекционные14. Исследования показывают, что ферментативная эпоксидация АА и EPA (с BM3) является регипоцитивным и энантиоселективным15,16,17,18, но эта процедура не была протестирована с ДГК, или на большом Масштаб. Общая цель нашего метода заключалась в расширении и оптимизации этой хемоэнсиматической эпоксидации, чтобы быстро производить значительное количество чистых эпоксидных жирных кислот в качестве их отдельных энантиомимов. Используя представленный здесь метод, исследователи имеют доступ к простой и экономичнейой стратегии синтеза ЭДП и других эпоксидных метаболитов PUFA.
Мы представляем здесь оперативно простой и экономически эффективный метод подготовки двух наиболее распространенных эпоксидных метаболитов ДГК – 19,20 и 16,17-EDP. Эти эпоксидные жирные кислоты могут быть подготовлены в высоко энантиочисты (как их S,R-изомеры) форме с использованием фермента…
The authors have nothing to disclose.
Эта работа финансируется R00 ES024806 (Национальные институты здравоохранения), DMS-1761320 (Национальный научный фонд) и стартап-фонды из Мичиганского государственного университета. Авторы хотели бы поблагодарить д-ра Джун Яна (Калифорнийский университет в Дэвисе) и Лалиту Каршаллу (Мичиганский государственный университет) за помощь в оптимизации ферментативной реакции, и д-ра Тони Шилмиллера (МГУ Масс-спектрометрии и метаболомики) для помощи в получении данных HRMS.
Ammonium Bicarbonate | Sigma | 9830 | NA |
Ampicillin | GoldBio | A30125 | NA |
Anhydrous magnesium sulfate | Fisher Scientific | M65-3 | NA |
Anhydrous methanol | Sigma-Aldrich | 322515 | NA |
Anhydrous sodium sulfate | Fisher Scientific | S421-500 | NA |
Anhydrous toluene | Sigma-Aldrich | 244511 | NA |
Arachidonic Acid (AA) | Nu-Chek Prep | U-71A | Air-sensitive. |
Diethyl Ether | Sigma | 296082 | NA |
DMSO (molecular biology grade) | Sigma-Aldrich | D8418 | NA |
Docosahexaenoic Acid (DHA) | Nu-Chek Prep | U-84A | Air-sensitive. |
EDTA (ethylenediaminetetraacetic acid) | Invitrogen | 15576028 | NA |
Eicosapentaenoic Acid (EPA) | Nu-Chek Prep | U-99A | Air-sensitive. |
Ethyl acetate | Sigma | 34858 | NA |
Flash column cartridges 25, 40, 4, 12 g sizes | Fisher Scientific | 145170203, 145154064, 5170200 | Alternatively, conventional column chromatography can be used |
Formic acid (HPLC Grade) | J.T. Baker | 0128-01 | NA |
Glycerol | Sigma | G7757 | NA |
Hexanes | VWR | BDH24575 | NA |
LB Broth | Sigma | L3022 | NA |
Lithium hydroxide | Sigma-Aldrich | 442410 | NA |
Magnesium chloride | Fisher Scientific | 2444-01 | NA |
Methanol (HPLC grade) | Sigma-Aldrich | 34860-41-R | NA |
NADPH Tetrasodium Salt | Sigma-Aldrich | 481973 | Air-sensitive. |
Oxalic acid | Sigma-Aldrich | 194131 | NA |
pBS-BM3 transfected DH5α E. coli | NA | NA | NA |
PMSF (phenylmethanesulfonyl fluoride) | Sigma | P7626 | Toxic! |
Potassium Permanganate | Sigma-Aldrich | 223468 | For TLC staining. |
Potassium phosphate dibasic | Sigma | 795496 | NA |
Potassium phosphate monobasic | Sigma | 795488 | NA |
Q Sepharose Fast Flow resin (GE Healthcare life sciences) | Fisher Scientific | 17-0515-01 | For anion exchange purification of enzyme |
Sodium Chloride | Sigma | 71376 | NA |
Tetrahydrofuran, anhydrous | Sigma-Aldrich | 186562 | NA |
TMS-Diazomethane (2.0 M in hexanes) | Sigma-Aldrich | 362832 | Very toxic. |
Tris-HCl | GoldBio | T-400 | NA |
Also necessary: | |||
Automatic flash purification system (we used a Buchi Reveleris X2) | Buchi | ||
C18 HPLC column (Zorbax Eclipse XDB-C18) | Agilent | ||
Centrifuge capable of 10,000 x g | |||
Chiral HPLC Column (Lux cellulose-3), 250 x 4.6 mm, 5 µM, 1000 Å) | Phenomenex | ||
General chemistry supplies: a 2 L separatory funnel, beakers and Erlenmeyer flasks with 1000-2000 L capacity, 20 mL vials, HPLC vials, small round-bottomed flasks and stir-bars. | |||
HPLC (we use a Shimadzu Prominence LC-20AT analytical pump and SPD-20A UV-vis detector | Shimadzu | ||
Nanodrop 2000 Spectrophotometer | Thermo-Fisher Scientific | ||
NMR | NMR: Agilent DD2 spectrometer (500 MHz) | ||
Rotary evaporator | Buchi | ||
Sonic dismembrator or ultrasonic homogenizer | Cole-Parmer |