מיקרו-מערך מחייב חלבון (pbm) ניסויים בשילוב עם בחני יוכימיים מקשר את תכונות הכריכה והקטליטי של ה-dna primase, אנזים שעושה שילוב של ה-RNA התחל ב-dna תבנית. שיטה זו, המיועדת כprimase ליצירת פרופיל בתפוקה גבוהה (HTPP), יכולה לשמש לחשיפת דפוסי איגוד DNA של מגוון אנזימים.
דנ א primase מגדלים קצרים RNA התחל ליזום סינתזה של דנ א של קטעי וקאזאקי על סטרנד בפיגור על ידי DNA פולימראז במהלך שכפול DNA. הכריכה של הprimases של prokaryotic בדומה ל-DNA מתרחשת ברצף זיהוי טריאוקלאוטית מסוים. זהו צעד מרכזי ביצירת קטעים של וקאזאקי. כלים ביוכימיים קונבנציונליים המשמשים כדי לקבוע את רצף זיהוי ה-DNA של primase DNA לספק רק מידע מוגבל. באמצעות שיטת האיגוד המבוסס על מיקרוarray עם תפוקה גבוהה וניתוחים ביוכימיים עוקבים, הוכח כי 1) ההקשר המחייב הספציפי (רצפי מעבר של אתר הזיהוי) משפיע על חוזק הכריכה של ה-DNA הprimase לתבנית שלו DNA, ו 2) מחייב חזק יותר של primase לתשואות ה-DNA התחל עוד RNA, המציין מעבד גבוה יותר של האנזים. שיטה זו משלבת PBM ו primase הפעילות והוא מיועד כprimase התפוקה גבוהה (HTPP), והוא מאפשר אפיון של זיהוי רצף ספציפי על ידי primase DNA בזמן ומדרגיות חסר תקדים.
HTPP עושה שימוש בטכנולוגיה מיקרו מחייב DNA בשילוב עם ניתוח ביוכימיים (איור 1) כדי סטטיסטית לזהות תכונות ספציפיות של תבניות DNA המשפיעות על הפעילות האנזימטית של primase DNA. לכן, HTPP מספק פלטפורמה טכנולוגית המאפשרת קפיצת ידע בתחום. הכלים הקלאסיים המשמשים לקביעת אתרי זיהוי primase אין להם את היכולת להניב כמות מסיבית של נתונים, בעוד HTPP עושה.
Pbm היא טכניקה המשמשת באופן שגרתי כדי לקבוע את ההעדפות קשירה של גורמי תמלול ל-DNA1,2; עם זאת, הוא אינו מתאים לזיהוי של מחייב חלש/ארעי של חלבונים ל-DNA. בניגוד PBM אוניברסלי המספק מידע על ממוצע כריכת חלבון ספציפיות לכל הרצפים האפשריים המורכב של שמונה זוגות בסיס, HTPP מבוסס על הספריה של יחיד תקועים תבניות DNA הכוללת אלמנטים רצף ייחודי. אלה אלמנטים רצף DNA כרוך עשרות אלפים קצרים (עשרות מעטים של bp) רצפים גנומית, כמו גם רצפי DNA מעוצב מעוצבים מועשר ב-DNA מסוימים רצף החוזר רכיבים הנמצאים בגנום, אשר בעלי תוכן GC ממוצע שונים . גישה בעלת תפוקה גבוהה כזו מאפשרת נחישות, באופן שיטתי, כמותי ומונחה השערות, המאפיינים הקשורים ברצף החשובים לאיגוד הprimase ופעילותה האנזימטית3. בפרט, את הקשר החשוב בין primase-DNA העדפות איגוד, (מאופנן על ידי רצפי DNA האגפים מסוימים שלושה נוקלאוטיד אתרים מחייב) ו primase מעבד זוהה עבור מערכת זו אנזימטית4.
הטכנולוגיה החדשה הוחל לחזור על ההבנה שלנו של אתרי זיהוי primase אפילו עבור ה-DNA T7 primase כי כבר למד בהרחבה5. במיוחד, בחינת מחדש של מושגים קלאסיים, כגון אתרי זיהוי דנ א של T7 DNA primase (אשר נקבעו כמעט ארבעה עשורים לפני 6) באמצעות חלבון-dna המחייב מיקרוarray (pbm) הוביל תובנה חסרת תקדים לתוך תכונות הקשורות את הרצף האגף של אתרי ההוקרה האלה3. זה היה צפוי הרצפים החוצה אתר הכרה tri-נוקלאוטיד של T7 DNA primase (5 ‘-GTC-3 ‘) יהיה אקראי. במקום זאת, מצאנו כי רצפים של TG-עשיר האגפים להגדיל את הסיכויים של T7 DNA primase לסנתז עוד RNA התחל להצביע על עלייה בתהליך.
שיטות אחרות אשר ניתן להשתמש כדי ללמוד את המאפיינים של כריכת ה-DNA של חלבונים בתוך מבחנה כוללים את היכולת לנוע בתנועה אלקטרופלוטית (EMSA)7, dnase I footprinting דפסה8, משטח-פלמון תהודה (spr)9, ומדרום מערב בלוק 10. אלה הם, עם זאת, שיטות תפוקה נמוכה ישים רק כדי לחקור מספר קטן של רצפי DNA. בנוסף, הדיוק והרגישות של חלק מהשיטות האלה (למשל, EMSA) נמוך. מצד שני, בחירה מחוץ גופית11 היא טכניקה, בדומה pbm, ניתן להשתמש לזיהוי רצפים מחייב רבים. עם זאת, רצפי אהדה נמוכים בדרך כלל אינם נכללים ברוב היישומים של בחירת חוץ גופית; לפיכך, גישה זו אינה מתאימה לקבלת נתונים מחייבים השוואתיים עבור כל הרצפים הזמינים. ה-pbm האוניברסלי1,2 משמש בעיקר כדי לאפיין את הקשירה של גורמי שעתוק prokaryotes ו eukaryotes, כמו גם גורמים ספציפיים (למשל, נוכחות של ליגטים מסוימים, קופטים, וכו ‘) שעשויים ישפיע על האינטראקציה הזאת12.
HTPP מרחיב את היישום PBM לאנזימים עיבוד ה-DNA על ידי שילוב של עוצמה סטטיסטית בתפוקה גבוהה תקדים עם דיוק גבוהה כדי לספק מידע על ההקשר רצף כריכה. נתונים אלה עדיין לא הושגו עבור primases ואנזימים הקשורים (כי יש כריכה חלשה/ארעית ל-DNA) בשל מגבלות טכניות כאמור של טכניקות זמינות אחרות.
שיטת PBM נעשה שימוש נרחב כדי לחקור את מאפייני הכריכה של שעתוק גורמים והוא יכול גם להיות מוחל על אנזימים עיבוד DNA, כגון primase DNA, כי לאגד DNA עם זיקה נמוכה. עם זאת, יש צורך בשינויים מסוימים בהליכים ניסיוניים. הניסוי המיקרו-מערך כרוך במספר שלבים: עיצוב ספריית ה-DNA, הכנת השבב, איגוד מטרת החלבון, תיוג פל…
The authors have nothing to disclose.
מחקר זה נתמך על ידי הקרן הישראלית למדעים (גרנט no. 1023/18).
40% acrylamide-bisacrylamide (19:1) solution | Merck | 1006401000 | |
95% formamide | Sigma-Aldrich | F9037-100ML | |
Alexa 488-conjugated anti-his antibody | Qiagen | 35310 | |
Ammonuium persulfate (APS) | Sigma-Aldrich | A3678-100G | |
ATP, [α-32P] – 3000 Ci/mmol | Perkin Elmer | NEG003H250UC | |
Boric acid, granular | Glentham Life Sciences | GE4425 | |
Bovine Serum Albumin (BSA) | Roche | 10735094001 | |
Bromophenol blue | Sigma-Aldrich | B0126-25G | |
Coplin jar | |||
Dithiothreitol (DTT) | Sigma-Aldrich | D0632-25G | |
DNA microarray | Agilent | 4x180K (AMADID #78366) https://www.agilent.com |
|
Ethylenediaminetetraacetic acid (EDTA) | Acros Organics | AC118430010 | |
Fujifilm FLA-5100 phosphorimager | FUJIFILM Life Science | ||
Glass slide staining rack | Thermo Scientific | 12869995 | If several slides are used |
Lab rotator | Thermo Scientific | 88880025 | |
Magnesium chloride | Sigma-Aldrich | 63064-500G | |
Microarray Hybridization Chamber | Agilent | G2534A | https://www.agilent.com/cs/library/usermanuals/Public/G2534-90004_HybridizationChamber_User.pdf |
Microarray scanner (GenePix 4400A) | Molecular Devices | ||
Phosphate Buffered Saline (PBS) | Sigma-Aldrich | P4417-100TAB | |
Potassium glutamate | Alfa Aesar | A172232 | |
Ribonucleotide Solution Mix (rNTPs) | New England BioLabs | N0466S | |
Salmon testes DNA | Sigma-Aldrich | D1626-1G | |
Skim milk powder | Sigma-Aldrich | 70166-500G | |
Staining dish | Thermo Scientific | 12657696 | |
Tetramethylethylenediamine (TEMED) | Bio-Rad | 1610800 | |
Tris base (2-Amino-2-(hydroxymethyl)-1,3-propanediol) | Sigma-Aldrich | 93362-500G | |
Triton X-100 | Sigma-Aldrich | X100-500ML | |
Tween-20 | Sigma-Aldrich | P9416-50ML | |
Urea | Sigma-Aldrich | U6504-1KG | |
Xylene cyanol | Alfa Aesar | B21530 |