Les expériences de microréseau de liaison protéique (PBM) combinées à des essais biochimiques relient les propriétés de liaison et catalytiques de la primase de l’ADN, une enzyme qui synthétise les amorces d’ARN sur l’ADN modèle. Cette méthode, désignée comme profilage primase à haut débit (HTPP), peut être utilisée pour révéler les modèles de liaison de l’ADN d’une variété d’enzymes.
La primase d’ADN synthétise les amorces courtes d’ARN qui initient la synthèse d’ADN des fragments d’Okazaki sur le brin lanel par la polymérase d’ADN pendant la réplication d’ADN. La liaison des primases procaryotes de DnaG-comme à l’ADN se produit à une séquence spécifique de reconnaissance de trinucleotide. C’est une étape charnière dans la formation des fragments d’Okazaki. Les outils biochimiques conventionnels qui sont utilisés pour déterminer la séquence de reconnaissance de l’ADN de la primase de l’ADN ne fournissent que des informations limitées. À l’aide d’un test de liaison à haut débit à base de microarray et d’analyses biochimiques consécutives, il a été démontré que 1) le contexte de liaison spécifique (séquences de liaison du site de reconnaissance) influence la force de liaison de la primase de l’ADN à son modèle L’ADN, et 2) la liaison plus forte de primase à l’ADN donne des amorces plus longues d’ARN, indiquant une plus grande processivité de l’enzyme. Cette méthode combine PBM et primase activity test et est désigné comme profilage primase à haut débit (HTPP), et il permet la caractérisation de la reconnaissance de séquence spécifique par primase de l’ADN dans un temps et une évolutivité sans précédent.
Le HTPP utilise la technologie de microréseau de liaison de l’ADN combinée à l’analyse biochimique (Figure 1) pour identifier statistiquement les caractéristiques spécifiques des modèles d’ADN qui affectent l’activité enzymatique de la primase de l’ADN. Par conséquent, HTPP fournit une plate-forme technologique qui facilite un saut de connaissances dans le domaine. Les outils classiques utilisés pour déterminer les sites de reconnaissance primase n’ont pas la capacité de produire une quantité massive de données, alors que le PTDH le fait.
LE PBM est une technique couramment utilisée pour déterminer les préférences de liaison des facteurs de transcription à l’ADN1,2; cependant, il n’est pas approprié pour la détection de la liaison faible/transitoire des protéines à l’ADN. Contrairement au PBM universel qui fournit des informations sur la spécificité moyenne de liaison des protéines à toutes les séquences possibles composées de huit paires de base, HTPP est basé sur la bibliothèque de modèles d’ADN à brin unique comprenant des éléments de séquence uniques. Ces éléments de séquence d’ADN impliquent des dizaines de milliers de séquences génomiques courtes (quelques dizaines de bp), ainsi que des séquences d’ADN conçues par calcul enrichies dans certains éléments de séquence répétitive d’ADN présents dans le génome, qui possèdent un contenu moyen différent de GC . Une telle approche à haut débit permet de déterminer, de manière systématique, quantitative et hypothétique, les propriétés liées à la séquence qui sont importantes pour la liaison primase et son activité enzymatique3. En particulier, le lien important entre les préférences de liaison primase-ADN (modulées par des séquences d’ADN flanquant des sites de liaison trinucléotides spécifiques) et la processivité primase a été identifiée pour ce système enzymatique4.
La nouvelle technologie a été appliquée pour revoir notre compréhension des sites de reconnaissance primase, même pour la primase de l’ADN T7 qui a fait l’objet d’études approfondies5. Plus précisément, le réexamen de concepts classiques, tels que les sites de reconnaissance de l’ADN de primase de l’ADN T7 (qui ont été déterminés il y a près de quatre décennies 6) à l’aide d’un microréseau liant protéine-ADN (PBM) a permis d’obtenir un aperçu sans précédent des caractéristiques liées aux la séquence de flanc de ces sites de reconnaissance3. On s’attendait à ce que les séquences flanquant le site de reconnaissance trinucléotide de la primase d’ADN T7 (5′-GTC-3′) soient aléatoires. Au lieu de cela, nous avons constaté que les séquences de flanc TG-riches augmentent les chances de primase d’ADN de T7 pour synthétiser des amorces plus longues d’ARN indiquant une augmentation de processivity.
D’autres méthodes qui peuvent être utilisées pour étudier les propriétés de liaison de l’ADN des protéines in vitro comprennent l’analyse de changement de mobilité électrophorétique (EMSA)7, DNase I empreinte8, résonance de surface-plasmon (SPR)9, et le sud-ouest ballonnement 10. Il s’agit toutefois de méthodes à faible débit qui ne s’appliquent qu’à l’étude d’un petit nombre de séquences d’ADN. De plus, la précision et la sensibilité de certaines de ces techniques (p. ex., EMSA) sont faibles. D’autre part, la sélection in vitro11 est une technique qui, tout comme PBM, peut être utilisée pour l’identification de nombreuses séquences de liaison. Cependant, les séquences de faible affinité sont généralement exclues dans la plupart des applications de la sélection in vitro; par conséquent, cette approche n’est pas adaptée pour obtenir des données comparatives de liaison pour toutes les séquences disponibles. Le PBM1,2 universel est principalement utilisé pour caractériser les spécificités de liaison des facteurs de transcription des procaryotes et des eucaryotes ainsi que des facteurs spécifiques (par exemple, la présence de certains ligands, cofacteurs, etc.) qui peuvent affecter cette interaction12.
HTPP étend l’application PBM aux enzymes de traitement de l’ADN en combinant une puissance statistique à haut débit sans précédent avec une grande précision pour fournir des informations sur le contexte de séquence de liaison. Ces données n’ont pas encore été obtenues pour les primases et les enzymes connexes (qui ont une liaison faible/transitoire à l’ADN) en raison des limitations techniques susmentionnées d’autres techniques disponibles.
La méthode PBM a été largement utilisée pour étudier les propriétés de liaison des facteurs de transcription et peut également être appliquée aux enzymes de traitement de l’ADN, telles que la primase de l’ADN, qui se lient à l’ADN avec une faible affinité. Cependant, certaines modifications des procédures expérimentales sont nécessaires. L’expérience de microarray comporte plusieurs étapes : conception de la bibliothèque d’ADN, préparation de la puce, liaison de la cible protéique, étiquetage fluores…
The authors have nothing to disclose.
Cette recherche a été soutenue par la FONDATION ISRAEL SCIENCE (subvention no 1023/18).
40% acrylamide-bisacrylamide (19:1) solution | Merck | 1006401000 | |
95% formamide | Sigma-Aldrich | F9037-100ML | |
Alexa 488-conjugated anti-his antibody | Qiagen | 35310 | |
Ammonuium persulfate (APS) | Sigma-Aldrich | A3678-100G | |
ATP, [α-32P] – 3000 Ci/mmol | Perkin Elmer | NEG003H250UC | |
Boric acid, granular | Glentham Life Sciences | GE4425 | |
Bovine Serum Albumin (BSA) | Roche | 10735094001 | |
Bromophenol blue | Sigma-Aldrich | B0126-25G | |
Coplin jar | |||
Dithiothreitol (DTT) | Sigma-Aldrich | D0632-25G | |
DNA microarray | Agilent | 4x180K (AMADID #78366) https://www.agilent.com |
|
Ethylenediaminetetraacetic acid (EDTA) | Acros Organics | AC118430010 | |
Fujifilm FLA-5100 phosphorimager | FUJIFILM Life Science | ||
Glass slide staining rack | Thermo Scientific | 12869995 | If several slides are used |
Lab rotator | Thermo Scientific | 88880025 | |
Magnesium chloride | Sigma-Aldrich | 63064-500G | |
Microarray Hybridization Chamber | Agilent | G2534A | https://www.agilent.com/cs/library/usermanuals/Public/G2534-90004_HybridizationChamber_User.pdf |
Microarray scanner (GenePix 4400A) | Molecular Devices | ||
Phosphate Buffered Saline (PBS) | Sigma-Aldrich | P4417-100TAB | |
Potassium glutamate | Alfa Aesar | A172232 | |
Ribonucleotide Solution Mix (rNTPs) | New England BioLabs | N0466S | |
Salmon testes DNA | Sigma-Aldrich | D1626-1G | |
Skim milk powder | Sigma-Aldrich | 70166-500G | |
Staining dish | Thermo Scientific | 12657696 | |
Tetramethylethylenediamine (TEMED) | Bio-Rad | 1610800 | |
Tris base (2-Amino-2-(hydroxymethyl)-1,3-propanediol) | Sigma-Aldrich | 93362-500G | |
Triton X-100 | Sigma-Aldrich | X100-500ML | |
Tween-20 | Sigma-Aldrich | P9416-50ML | |
Urea | Sigma-Aldrich | U6504-1KG | |
Xylene cyanol | Alfa Aesar | B21530 |