O objetivo deste protocolo é iniciar a polimerização usando ligações dinâmicas de enxofre em poli (S-divinylbenzeno) a temperaturas amenas (90 ° c) sem usar solventes. Os terpolímeros são caracterizados por GPC, DSC e 1H NMR, e testados para alterações na solubilidade.
O enxofre elementar (S8) é um subproduto da indústria petrolífera com milhões de toneladas produzidas anualmente. Tal produção abundante e aplicações limitadas conduzem ao enxôfre como um reagente cost-efficient para a síntese do polímero. O vulcanização inverso combina o enxôfre elementar com uma variedade de monómeros para dar forma aos polissulfetos funcionais sem a necessidade para solventes. Os tempos de reação curtos e os métodos sintéticos retos conduziram à expansão rápida da vulcanização inversa. No entanto, altas temperaturas de reação (> 160 ° c) limitam os tipos de monómeros que podem ser usados. Aqui, as ligações dinâmicas de enxofre em poli (S-divinylbenzeno) são usadas para iniciar a polimerização em temperaturas muito mais baixas. As ligações S-S no pré-polímero são menos estáveis do que as ligações S-s em S8, permitindo a formação radical a 90 ° c em vez de 159 ° c. Uma variedade de éteres de alilo e de vinil foi incorporada para formar terpolímeros. Os materiais resultantes foram caracterizados por 1H RMN, cromatografia de permeação de gel e Calorimetria exploratória diferencial, além de examinar alterações na solubilidade. Esse método se expande na química radical thiyl, livre de solventes, utilizada pela vulcanização inversa para criar polissulfetos a temperaturas amenas. Este desenvolvimento amplia a gama de monómeros que podem ser incorporados, expandindo assim as propriedades de materiais acessíveis e possíveis aplicações.
A conversão de compostos organoenxôfre para S8 durante o refinamento de petróleo levou à acumulação de grandes estoques de enxofre1. O enxofre elementar é usado principalmente para a produção de ácido sulfúrico e fosfatos para fertilizantes2. A abundância relativa fornece um reagente prontamente disponível e barato que faz o enxôfre elementar uma matéria-prima ideal para o desenvolvimento de materiais.
A vulcanização inversa é uma técnica de polimerização relativamente nova que reutiliza o enxofre em materiais funcionais3. O anel de S8 converte a uma corrente diradical, linear em cima do aquecimento acima de 159 ° c. Os radicais thiyl então iniciam a polimerização com monómeros para formar polissulfetos3. Além das polimerizações radicais tradicionais, a vulcanização inversa tem sido utilizada para iniciar a polimerização com benzoxazinas4. Os polímeros resultantes têm sido utilizados para uma ampla gama de aplicações, incluindo cátodos em baterias de Li-S1,5,6,7, auto-cura lentes ópticas8,9 , mercúrio e óleo sorventes5,10,11,12,13,14,15, isoladores térmicos15, para ajudar em a liberação lenta do fertilizante16 , bem como demonstrar alguma atividade antimicrobiana17. Um grupo forneceu uma análise sistemática minuciosa desses polissulfetos, fornecendo mais informações sobre o caráter isolante e as propriedades mecânicas com conteúdo variado de S18. Os detalhes específicos podem ajudar no desenvolvimento de outras aplicações. As ligações dinâmicas presentes nesses materiais também têm sido utilizadas para reciclar os polissulfetos19,20. No entanto, as altas temperaturas exigidas pela vulcanização inversa, tipicamente 185 ° c, e falta de miscibilidade com S8, limitam os monómeros que podem ser usados3.
Os primeiros esforços centraram-se na polimerização de hidrocarbonetos aromáticos, hidrocarbonetos estendidos e monómeros naturais com pontos de ebulição elevados5. Estes métodos foram expandidos usando poli (S-estireno) como um pré-polímero melhorando a miscibilidade entre S8 e mais monômeros polares, incluindo monômeros acrílicos, alílicos e funcionalizados, com o uso do monómero de estireno21. Outro método utiliza ativadores de amina nucleofílica para aumentar as taxas de reação e temperaturas de reação mais baixas22. Entretanto, muitos monómeros têm pontos de ebulição bem abaixo de 159 ° c e exigem assim um método alternativo para a formação do polysulfide.
Na forma de coroa estável, as ligações S-S são as mais fortes, exigindo assim altas temperaturas para a clivagem23. Em polissulfetos, o enxofre está presente como correntes lineares ou loops, permitindo que as ligações s-s sejam clivadas a temperaturas muito mais baixas1,24. Usando poli (S-DVB) (DVB, divinylbenzeno) como um pré-polímero, um segundo monômero com um ponto de ebulição mais baixo, como 1,4-ciclohexanedimetanol divinylether (CDE, ponto de ebulição de 126 ° c), pode ser introduzido24. Este trabalho demonstra uma melhoria mais adicional abaixando a temperatura da reação ao ° c 90 com uma família de monómeros do éter do alilo e do vinil. As reações que incorporam um segundo monómero permanecem sem solvente.
O principal benefício deste método é a capacidade de formar polissulfetos a temperaturas amenas, 90 ° c versus > 159 ° c para a vulcanização inversa tradicional. As correntes de enxofre estendidas e os laços de enxofre em poli (s-DVB) são menos estáveis do que as ligações s-s em s823,26. As temperaturas mais baixas podem então ser usadas para causar a formação homolítica da scission e do radical do thiyl24. Para …
The authors have nothing to disclose.
Os agradecimentos são devidos ao fundo americano da pesquisa do petróleo da sociedade química (PRF # 58416-UNI7) para o apoio financeiro.
Sulfur, 99.5%, sublimed, ACROS Organics | Fisher Scientific | AC201250250SDS | |
divinylbenzene | Fisher Scientific | AA4280422 | |
1,4-Cyclohexanedimethanol divinyl ether, mixture of isomers | Sigma Aldrich | 406171 | |
Cyclohexyl vinyl ether | Fisher Scientific | AC395420500 | |
Allyl ether | Sigma Aldrich | 259470 | |
maleimide | Sigma Aldrich | 129585 | |
dichlormethane | Fisher Scientific | D37 | |
N,N-dimethylformamide | Fisher Scientific | D119 | |
Auto sampler Aluminum Sample Pans, 50µL, 0.1mm, Sealed | Perkin Elmer | B0143017 | |
Auto sampler Aluminum Sample Covers | Perkin Elmer | B0143003 | |
EMD Millipore 13mm Nonsterile Millex Syringe Filters – Hydrophobic PTFE Membrane, 0.45 um | Fisher Scientific | SLFHX13NL |