여기서, 우리는 생체 내 과정을 다시 캡처하는 동안 제어 된 조건에서 뼈 및 연골 발달 및 항상성 분석에 적합 한 태아 및 신생 단계에서 긴 뮤 린 뼈의 생체 내 배양을 위한 방법을 제시 한다.
긴 뼈는 복잡 하 고 동적인 구조, 연골 중간을 통해 endochondral 골 화에서 발생 하는. 건강 한 인간의 뼈에 대 한 제한 된 액세스는 특히 마우스와 쥐와 같은 포유류 모델을 사용 하 여 뼈 성장과 항상성의 다양 한 측면을 살펴 보는 데 유용 합니다. 추가적으로, 쥐에 있는 정교한 유전 공구의 발달은 긴 뼈 성장의 더 복잡 한 연구를 허용 하 고 뼈 성장을 공부 하기 위하여 이용 된 기술의 확장을 요구 합니다. 여기서, 우리는 생체 내 뮤 린 뼈 배양에 대 한 상세한 프로토콜을 제시 하 고,이는 체 내 과정의 대부분을 탈환 하면서 밀접 하 게 통제 된 방식으로 뼈와 연골의 연구를 가능 하 게 한다. 설명 된 방법은 경골, 대 퇴 골 및 중 족 뼈를 포함 한 뼈의 범위의 배양을 허용 하지만, 우리는 여기에 경골 문화에 주로 초점을 맞추고 있다. 더욱이, 타임 랩 스 라이브 이미징 또는 약물 치료와 같은 다른 기술과 조합 하 여 사용 될 수 있다.
장기 성장은 성장 장애의 출현을 막기 위해 밀접 하 게 조율 되어야 하며, 신체의 다른 부분 들 사이에서 여러 세포 유형, 분자 통로 및 누화를 조절 하는 것을 수반 한다. 이미징 기법은 정상적인 상태에서 성장 하는 배아에서 시간이 지남에 따라 발생 하는 변화를 해결 하는 데 필수적 이며, 시스템에서 교란이 유도 된 후에도 중요 합니다. 널리 사용 되는 설치류 모델과 같은 자궁내 발달을 가진 배아는, 전 생체 배양 기술을 사용 하 여 부분적으로 극복할 수 있는 살아있는 화상 진 찰 및 약 처리를 위한 추가 도전을 제시 합니다. 생체 내 프로세스를 성공적으로 탈환 하 고 의미 있는 결과를 얻으려면 각 기관이 나 조직에 적합 한 배양 조건을 찾는 것이 중요 합니다.
포유류 해골의 대부분의 뼈는 endochondral 골 화를 통해 자라 며, 여기서 배아 (연골 세포로 구성 됨)는 세로 성장을 유도 하 고 점차적으로 뼈로 대체 됩니다. 이 과정은 3 개의 영역이 구별 될 수 있는 긴 뼈의 끝에 있는 성장 판에서 발생 합니다: 휴식, 증식 및 비 대1,2. 먼저, 휴지기에서의 원형 전구 연골 세포는 증식 영역에서 사이클링 원주 형 연골 세포로 전환 한다. 분화의 다음 단계 도중,이 연골 세포는 비 대 하 하 고 유형 X 교원 질을 은닉 하기 시작 됩니다. 비 대 성 연골 세포는 골 화의 후속 단계를 조율 합니다: 그들은 결합 조직 성장 인자, 뼈 형성 단백질 및 인도 고슴도치와 같은 주요 신호 분자를 분 비 하 고 매트릭스의 미네랄 화를 직접, 모집 혈관을 뼈의 중앙 부분에, 그리고 아 폽 토시 스를 시 킴으로써, 골 아 세포가 매트릭스에 침입 하 여 일차 골 화 중심3,4를 형성 하도록 한다. 광물 화 된 매트릭스는 골 아 세포가 이동 하 여이 저하 된 연골을 뼈 매트릭스5로 대체 하는 혈관의 침투를 촉진 합니다. 대부분의 골 아 세포는 연골 세포 로부터 연골 매트릭스를 침범 하 고, 섬유질 층은6. 대안적으로, 비 대 성 연골 세포의 비율은 조 골 세포를 생존 하 고 트랜스 분화 할 수 있다7,8,9. 뼈의 최종 길이는 일시적인 연골의 축적 된 성장에 기인 하며, 그의 성장 속도는 비 대 성 연골 세포의 수 및 크기, 및 그들의 매트릭스 생산10에 의존 한다. 추가적으로, 최근 비 대 단계의 지속 시간이 뼈 (11)의 최종 길이와 상관 된다는 것이 최근에 나타났다. 따라서, 적절 한 뼈 크기를 보장 하기 위해 이러한 세포의 증식 및 분화의 엄격한 조절이 필요 하다.
조직 및 성장 판의 개발에 년 동안 취득 한 실질적인 지식에도 불구 하 고, 이러한 결론의 대부분은 고정 조직학 섹션의 관찰에 기초한. 조직 절편은이 과정에 대 한 중요 한 정보를 제공 하지만, 기술적 아티팩트를가지고 수 있습니다, 그래서 항상 안정적으로 다른 단계 사이의 형태학 적 또는 크기 변화를 추정 하는 데 사용할 수 없습니다. 또한 뼈 성장이 동적인 과정 이기 때문에 정적 2 차원 (2D) 이미지는 성장 판의 세포 움직임에 대 한 제한적인 통찰력을 제공 하는 반면, 살아있는 조직에 대 한 타임 랩 스 이미징의 행동에 대 한 귀중 한 정보를 제공 할 수 있습니다 성장 판의 연골 세포.
이러한 모든 제한은 생체 내 뼈 배양을 사용 하 여 잠재적으로 해결 될 수 있습니다. 뼈 배양 프로토콜은 얼마 전에 개발 되었지만, 그들은 뮤 린 긴 뼈에 무제한으로 적용 되었습니다. 대부분의 연구는 병아리 모델12,13에 의해 제공 되는 기술적인 이점 때문에 병아리 뼈를 사용 합니다. 유기 형 배양 물 (공기/액체 계면)은 10 일 동안 배양에서 유지 되었던 병아리 배아 미 립 기에 적용 되었다14. 마우스에서 사용할 수 있는 정교한 유전 도구는이 모델을 ex vivo 뼈 문화에서 사용 되는 매우 매력적으로 만듭니다. 뼈 성장에 마우스를 사용 하는 연구는 대부분 중 족 뼈 (15)와 함께 일했다, 아마 그들의 작은 크기와 배아 당 얻은 더 큰 숫자 때문에16. 전통적으로 긴 뼈로 여겨 졌으 나, 중 족은 생체 내 다른 긴 뼈 보다 더 일찍 노화 (성장 판 (17)의 증식 및 인 볼륨 감소를 특징으로 하며, 따라서 이들의 지속적인 성장은 전 생체 실제로 생체 내 프로세스를 다시 캡처합니다. 이 기사의 목적상 근 위 및 중간 팔 다리 영역의 골격에 긴 골격 이라는 용어를 사용 합니다. 몇몇 이전 연구는 tibia와 같은 긴 뮤 린 뼈를 사용 하 여, 전 생체 내 배양에서 연골의 실질적인 성장을 관찰 하지만, 작은 골 화18. 우리는 또한 최근 연골 세포 역학 (19)을 연구 하기 위해, 경골 문화를 사용 했다. 다른 연구 들은 배양21에 대 한 대 퇴 골의 말단 부에만 젊은 쥐 (20 ) 로부터 넓 적으로 대 퇴 머리를 사용 하였다. 일부 더 최근의 작품은 성공적으로 살아있는 마우스 조직22,23에 있는 연골 세포의 3 차원 (3d) 영화를 획득 하기 위해 전체 뼈의 전 생체 배양을 타임 랩 스 이미징과 결합 한다. 저자는 뼈 ex vivo 문화의 잠재적인 적용의 좋은 예에 있는 증식 영역 (23 )에 연골 세포의 재배열에서 이전에 주목 이벤트를 관찰 하기 위해 관리. 대체, 즉 정적 이미지 분석에는 간접적이 고 복잡 한 기법이 필요 합니다. 이것은 연골 성장에 대 한 transversally 중심의 클론의 중요성을 평가 하는 최근의 연구에 의해 예시 되었으며, 여기서 수학적 모델링과 결합 된 다 색 리포터 마우스 균 주를 사용한 유전 추적이24를 사용 하였다. 따라서, 전 생체 배양은 보다 빠르고 간단한 방법으로 동적 프로세스에 대 한 통찰력을 얻는 데 도움이 될 수 있습니다.
여기에서, 우리는 다른 분자 처리 및/또는 시간 경과 살아있는 화상 진 찰과 결합 될 수 있는 긴 뼈 문화를 뮤 린 위한 방법을 제시 합니다. 이 프로토콜은 이전 보고서15,25에서 사용 된 방법을 조정 하지만 몇 가지 추가 문제를 해결 하 고 중 족 뼈가 아닌 경골과 같은 긴 뼈에 초점을 맞춥니다. 마지막으로, 그것은 다른 물질의 존재에 개별적으로 왼쪽과 오른쪽 뼈를 배양 하 여 통계적으로 강력한 쌍 비교를 사용의 잠재력을 탐구.
뼈 ex 생체 배양 방법은 뼈 성장 (28)의 생물학을 평가 하기 위해 몇 시간 동안 사용 되어 왔으며, 뮤 린 긴 뼈에는 거의 적용 되지 않았다. 이미징 기술의 발달로, 생체 내 뼈 배양은 생체 내 조건과 밀접 하 게 유사한 설정에서 실시간으로 뼈 성장을 연구 할 수 있는 매력적인 방법을 제공 합니다. 이 시나리오에서는 긴 뼈의 성장이 생체 내 성장에 필적 하는 조건을 정의 하는 것이 …
The authors have nothing to disclose.
우리는이 프로토콜이 확립 될 때 그녀의 지원 알렉산드라 Joyner 감사 하 고 싶습니다, Edwina 맥 글 린과 레 틴 산을 공유 하기 위한이 청 창. 호주 재생 의학 연구소는 빅토리아와 호주 정부의 주 정부의 보조금에 의해 지원 됩니다.
5-Ethynyl-2'-deoxyuridine | Santa Cruz | CAS 61135-33-9 | |
5-Bromo-2′-deoxyuridine | Sigma | B5002 | |
50mL Conical Centrifuge Tubes | Falcon | 352070 | |
60 mm TC-treated Center Well Organ Culture Dish, 20/Pack, 500/Case, Sterile | Falcon | 353037 | |
Adobe Photoshop | Adobe | CS4 | |
Ascorbic acid | Sigma | A92902 | |
Base unit for the scope | Zeiss | 435425-9100-000 | |
Betaglycerophosphate | Sigma | G9422 | |
Binocular scope | Zeiss | STEMI-2000 | |
Bovine Serum Albumin (BSA) fraction v | Roche/Sigma | 10735086001 | |
DigiRetina 500 camera | Aunet | ||
Dissection kit | Cumper Robbins | PFS00034 | |
DMEM | Gibco | 11960044 | |
DMSO | Sigma | D8418 | |
Eppendorf 2-mL tubes | Eppendorf | 0030120094 | |
Ethanol 96% | Merk | 159010 | |
Forceps Dumont#5 Inox08 | Fine Science Tools | T05811 | |
Heracell 150 CO2 incubator | Thermo Fisher | 51026282 | |
Minimum Essential Medium Eagle | Sigma | M2279 | |
Multiwell 24 well | Falcon | 353047 | |
Paraformaldehyde | Sigma | 158127 | |
Penicillin-Streptomycin (10,000 U/mL) | Gibco | 15140-122 | |
Plastic pipettes 1mL Sterile Individually wrapped | Thermo | 273 | |
Syringe filter 0.2 um | Life Sciences | PN4612 | |
Terumo syringe 20 mL | Terumo | DVR-5174 | |
Tretinoin (retinoic acid) | Sigma | PHR1187-3X | |
Trinocular scope | Aunet | AZS400T |