Questo protocollo dimostra l’uso di chip microfluidici compartimentati, iniezione modellata in un copolimero ciclico olefin a neuroni coltivati differenziati dalle cellule staminali umane. Questi chip sono preassemblati e più facili da usare rispetto ai tradizionali dispositivi di poli(dimetilsiloxane) compartimentati. Qui sono descritti più paradigmi sperimentali comuni, tra cui l’etichettatura virale, l’isolamento fluido, l’asaxtomia e l’immunostaining.
L’uso di dispositivi microfluidici per compartimentare i neuroni coltivati è diventato un metodo standard nelle neuroscienze. Questo protocollo mostra come utilizzare un chip multicompartivo preassemblato realizzato in un copolimero ciclico di olefin (COC) per compartimentare i neuroni differenziati dalle cellule staminali umane. L’impronta di questi chip COC è la stessa di un vetrino a microscopio standard e sono ugualmente compatibili con la microscopia ad alta risoluzione. I neuroni sono differenziati dalle cellule staminali neurali umane (NSC) in neuroni glutamatergici all’interno del chip e mantenuti per 5 settimane, consentendo tempo sufficiente per questi neuroni per sviluppare sinapsi e spine dendritiche. Inoltre, dimostriamo molteplici procedure sperimentali comuni utilizzando questi chip multi-compartimenti, tra cui l’etichettatura virale, la creazione di microambienti, l’assiotomia e l’immunocitochimica.
I neuroni differenziati delle cellule staminali umane (neuroni hSC) sono sempre più utilizzati per la ricerca biologica. Questi neuroni, che possono essere derivati da materiale di origine umana, sono di grande interesse per la ricerca traslazionale, compreso lo studio delle lesioni cerebrali traumatiche e disturbi neurodegenerativi come il morbo di Alzheimer. Così, strumenti per migliorare e facilitare lo studio dei neuroni hSC sono richiesti.
Per studiare l’esclusiva morfologia polarizzata dei neuroni, molti ricercatori utilizzano dispositivi microfluidici multi-compartimentati1,2,3,4,5,6, 7,8,9,10,11. Questi dispositivi consentono misurazioni e manipolazioni di neuroni a proiezione lunga con accesso subcellulare unico. I dispositivi microfluidici multi-compartmentalizzati sono costituiti da due compartimenti microfluidici paralleli separati da microgroove, che guidano la crescita assonale. I neuroni o le cellule staminali neurali (NSC) sono placcati nel compartimento somatodendritico, e quindi aderiscono alla parte inferiore della superficie del compartimento dopo minuti. I neuroni differenziati crescono ed estendono i loro assoni/proiezioni attraverso la regione microgroove in un compartimento assonale adiacente e isolato. In passato, questi dispositivi sono stati realizzati esclusivamente utilizzando lo stampaggio di replica poli (pdMS) (PDMS). I dispositivi PDMS hanno molti inconvenienti descritti in precedenza12, tra cui l’idrofobicità persistente e la necessità di assemblare su un coperchio di vetro immediatamente prima dell’uso. I chip stampati a iniezione pre-assemblati superano molti di questi inconvenienti e sono venduti commercialmente (vedi Tabella deimateriali)12. I compartimenti di questi chip sono permanentemente fatti idrofilo e l’intero chip viene stampato in ainiezione otticamente trasparente copolimero di olefin (COC).
Questo protocollo dimostra come utilizzare questo chip COC per differenziare le NSC umane in neuroni eccitatori e per separare e isolare in modo fluido le loro lunghe proiezioni neuronali. Per questa dimostrazione, i neuroni sono stati differenziati dalle cellule staminali H9 approvate dal NIH. Procedure simili possono essere utilizzate per differenziare le cellule staminali pluripotenti indotte dall’uomo.
Il chip COC multicompartiuso preassemblato è una piattaforma compartimentata di facile utilizzo per differenziare e mantenere le NSC umane in neuroni per lunghi rapporti (>4 settimane). In questo protocollo, dimostriamo la differenziazione delle NSC umane in neuroni glutamatergici, neuroni di etichette retrograde, eseguire immunocitochimica, visualizzare la morfologia della colonna vertebrale dendritica ed eseguire l’asotomia. Questi chip sono compatibili con l’imaging ad alta risoluzione e non c’è autofluorescenza con il COC12.
I chip multicompartidico COC sono funzionalmente equivalenti ai dispositivi compartimentati in silicone e presentano vantaggi e svantaggi come descritto in precedenza12. La tabella 1 confronta i chip COC multi-compartment e i dispositivi in silicone per la coltura di neuroni hSC. I chip compartimentati COC forniscono una superficie idrofila migliore per l’attaccamento e il mantenimento delle cellule staminali per un lungo periodo di coltura. I dispositivi basati su PDMS devono essere assemblati e collegati a coperchi in vetro. La natura idrofobica dei dispositivi PDMS provoca l’aggregazione delle cellule staminali5; questo porta sia a sfide nell’imaging a livello cellulare che a una maggiore suscettibilità ai danni fisici a causa del movimento delle aggregazioni cellulari durante i cambiamenti dei media. Il chip di plastica supera queste sfide. CoC è impermeabile a gas, a differenza di PDMS, quindi le sacche d’aria intrappolate o formate all’interno dei canali devono essere rimosse dall’utente. La soluzione di pre-rivestimento riduce la possibilità che l’aria rimanga intrappolata nei canali. Questa soluzione è costituita da etanolo e altri agenti. Un protocollo precedentemente pubblicato per la coltura di neuroni murini all’interno di questi chip di plastica fornisce ulteriori dettagli sulle cellule di pipettaggio e supporti all’interno dei chip12. Le NSC sono più fragili che i neuroni murini, quindi devono essere gestiti più delicatamente. È anche fondamentale mescolare accuratamente le cellule staminali prima della placcatura pipettandole delicatamente su e giù.
L’uso di neuroni derivati da cellule staminali umane differenziate in vitro sta diventando sempre più popolare in medicina e ricerca. Questi neuroni sono importanti per la ricerca e applicazioni cliniche per molti disturbi del SNC, tra cui malattie neurodegenerative e lesioni cerebrali traumatiche. Questi neuroni assomigliano molto ai neuroni fetali umani15. In futuro, neuroni opportunamente invecchiati potrebbero essere generati da cellule staminali per imitare la funzione neuronale legata all’età e utilizzati in combinazione con questi dispositivi compartimentati. Questi dispositivi faciliteranno la ricerca in malattie che colpiscono la salute degli assoni e funzionano come i deficit degli assoni nei neuroni di pazienti diagnosticati con disturbi dello spettro autistico e rigenerazione assonale dopo la lesione16,17.
The authors have nothing to disclose.
Gli autori riconoscono il sostegno di Xona Microfluidics, LLC, l’Istituto Nazionale di Salute Mentale (R42 MH097377) e il National Institute of Neurological Disorders and Stroke (R41 NS108895, P30 NS045892). Il contenuto è di esclusiva responsabilità degli autori e non rappresenta necessariamente le opinioni ufficiali dei National Institutes of Health.
Alexa Fluor hydrazide 488 | ThermoFisher Scientific | A10436 | |
Alexa Fluor secondary antibodies | ThermoFisher Scientific | 1:1000 | |
anti_beta-tubulin III | Aves | TUJ | 1:1000 |
anti-vGAT antibody | Synaptic Systems | 131 003 | 1:1000 |
anti-vGlut1 antibody | NeuroMab | 75-066 | clone N28/9, 1:100 |
complete neural stem cell media: | |||
REC HU EGF 10 UG BIOSOURCE (TM) |
ThermoFisher Scientific | PHG0314 | 20ng/mL |
REC HU FGF BASIC 10 UG BIOSOURCE (TM) |
ThermoFisher Scientific | PHG0024 | 20ng/mL |
GlutaMAX Supplement (100X) | ThermoFisher Scientific | 35050061 | 2mM |
KnockOut DMEM/F-12 | ThermoFisher Scientific | 12660012 | |
StemPro Neural Supplement | ThermoFisher Scientific | A1050801 | 2% |
Epifluorescence imaging system | EVOS Fluorescence imaging system | AMF4300 | 10x objective |
fluorinated ethylene propylene film | American Durafilm | 50A | 0.5 mil thickness |
Fluoromount G | ThermoFisher Scientific | 00-4958-02 | |
Gibco DPBS without Calcium and Magnesium | ThermoFisher Scientific | 14190144 | |
GIBCO HUMAN NSC (H9) KIT COMBO KIT |
Gibco | N7800200 | |
Gibco Laminin | ThermoFisher Scientific | 23017015 | |
Glass Pasteur pipettes | Sigma-Aldrich | CLS7095D5X SIGMA | 5.75 in length |
H9-DERIVED HU NEURAL STEM CELL 1E6 CELLS/VIAL; 1 ML |
ThermoFisher Scientific | 510088 | |
hibernate-E Medium | ThermoFisher Scientific | A1247601 | |
Incubator, 5% CO2 37 °C | |||
Laser scanning confocal imaging system | Olympus | FV3000RS | 30x silicone oil objective |
modified rabies virus | Salk Institute for Biological Studies | G-deleted Rabies-eGFP | Material Transfer Agreement required |
Mr. Frosty | ThermoFisher Scientific | 5100-0001 | |
Neural differentiation media | Per 100 mL. | ||
Antibiotic-Antimycotic (100x) | ThermoFisher Scientific | 15240112 | 1mL (100X) |
Ascorbic acid | Sigma Aldrich | A8960 | 200mM |
BDNF | ThermoFisher Scientific | PHC7074 | 40 ng/mL |
Gibco B27 Plus Supplement (50X) | FisherScientific | A3582801 | 2mL (50X) |
Gibco CultureOne Supplement (100X) | FisherScientific | A3320201 | 1mL (100X) |
Gibco Neurobasal Plus Medium | FisherScientific | A3582901 | |
StemPro Accutase Cell Dissociation Reagent | ThermoFisher Scientific | A1110501 | |
Taylor Wharton Liquid N2 dewar | FisherScientific | 20HCB11M | |
triton X-100 | ThermoFisher Scientific | 28314 | |
XC pre-coat | Xona Microfluidics, LLC | XC Pre-Coat | included with XonaChips |
XonaChip | Xona Microfluidics, LLC | XC450 | 450 µm length microgroove barrier |
Humidifier Tray | Xona Microfluidics, LLC | humidifier tray |