Un protocole de fabrication d’un dispositif affichage cristallin liquide cholestérique réflectif contenant un dopant chiraux favorisant l’oxydo-réduction, permettant un fonctionnement rapide et basse tension est présenté.
Nous démontrons un procédé de fabrication d’un dispositif d’affichage réflectif prototype contenant des cristaux liquides cholestériques (LC) comme une composante active. Le LC cholestérique regroupe un nématique LC 4′-pentyloxy-4-cyanobiphenyl (5OCB), dopant chiraux favorisant l’oxydo-réduction (FcD) et un prise en charge électrolyte 1-éthyl-3-méthylimidazolium trifluorométhanesulfonate (EMIm-OTf). La composante la plus importante est FcD. Cette molécule modifie sa valeur de puissance (HTP) torsion hélicoïdale en réponse aux réactions d’oxydo-réduction. Par conséquent, réactions redox électrochimiques in situ dans le mélange de LC permettent l’appareil changer sa couleur de réflexion en réponse à des stimuli électriques. Le mélange de LC a été introduit, par une action capillaire, dans une cellule verre de ITO type sandwich composée de deux lames de verre avec électrodes de motifs d’indium de d’oxyde d’étain (ITO), dont un a été recouvert de poly(3,4-ethylenedioxythiophene) –co-poly (éthylène glycol) dopé au perchlorate (PEDOT+). À la demande de + 1,5 V, la couleur de réflexion de l’appareil changé du bleu (467 nm) au vert (485 nm) à 0,4 s. ultérieure demande de 0 V fait l’appareil récupérer la couleur d’origine bleue 2.7 s. Cet appareil est caractérisé par sa réponse électrique la plus rapide et plus basse tension parmi tout signalé auparavant cholestérique appareil LC. Ce dispositif pourrait ouvrir la voie pour le développement de la prochaine affiche réfléchissant de génération avec les taux de consommation d’énergie faible.
Les cristaux liquides cholestériques (LCs) sont connus pour exposer les couleurs de réflexion lumineuse en raison de leurs arrangements moléculaires hélicoïdale interne1,2,3,4. La réflexion de longueur d’onde λ est déterminée par la hauteur hélicoïdale P et la moyenne réfraction indice n du code du travail (λ = nP). Ces LCs peut être généré par dopage chiral composés (chirales dopants) à nématique LCs et sa hauteur hélicoïdale est définie par l’équation P = 1/βMC, où βM correspond à la puissance de torsion hélicoïdale (HTP) et C est la molaire fraction de la dopant chiraux. Basé sur cette notion, divers dopants chiraux qui peut répondre à une variété de stimuli tels que lumière5,6,7,8,9de la chaleur, champ magnétique10et gaz11 a été développé. Ces propriétés sont potentiellement utiles pour diverses applications telles que les capteurs lasers et12 13,14,15 entre autres16,17,18 .
Récemment, nous avons développé le premier dopant chiraux favorisant l’oxydoréduction FcD (Figure 1A)19 qui pouvez modifier sa valeur d’HTP en réponse aux réactions d’oxydo-réduction. FC D est composé d’une unité de ferrocène, qui peut subir réversible redox réactions20,21,22et un binaphtyle, qui est connu pour la pièce haute HTP valeur23. Le LC cholestérique dopé au FcD, en présence d’un électrolyte, peut changer sa couleur de réflexion au sein de 0,4 s et récupérer ses originaux couleur 2.7 s à la demande de la tension de + 1,5 et 0 V, respectivement. La vitesse de réponse haute et basse tension observée pour le périphérique est sans précédent entre n’importe quel autre appareil LC cholestérique jusqu’ici signalé.
Une des applications importantes de la LCs cholestérique est écrans réfléchissants, dont le taux de consommation énergétique est beaucoup plus faible que les écrans classiques de LC. À cette fin, LCs cholestérique devrait changer sa couleur de réflexion avec des stimuli électriques. Cependant, la plupart des méthodologies précédentes utilise une électrique de couplage entre les stimuli électriques appliquées et les molécules de LC hôte, nécessitant une haute tension plus de 40 V24,25,26,27 ,,28. Pour l’utilisation de la dopant électriquement réactif chiral, il y a seulement quelques exemples29,30 dont nos précédents travaux31, qui requiert également la haute tension avec une vitesse de réponse faible. Compte tenu de ces œuvres précédentes, la performance de notre FcD-dopé périphérique de LC cholestérique, surtout pour la rapidité de modulation de couleur rapide (0,4 s) et basse tension d’alimentation (1,5 V), est une réalisation novatrice qui peut grandement contribuer au développement d’écrans réfléchissants de prochaine génération. Dans ce protocole détaillé, nous démontrons les procédés de fabrication et les modalités de fonctionnement du prototype cholestériques LC de périphériques d’affichage.
À la demande de + 1,5 V vers le haut électrode ITO (Figure 1C), FcD subit une réaction d’oxydation pour générer des FcD+. Comme la puissance de torsion hélicoïdale de FcD+ (101 µm-1, Figure 1B)…
The authors have nothing to disclose.
Nous remercions Dr Keisuke Tajima de RIKEN centre Emergent Matter Science des discussions utiles. Une partie de ce travail a été réalisée à la plate-forme de la nanotechnologie caractérisation avancée de l’Université de Tokyo, soutenu par le ministère de l’éducation, Culture, Sports, Science et technologie (MEXT), Japon. Ce travail a été soutenu financièrement par une subvention de la JSPS pour la recherche scientifique (S) (18H 05260) sur « Matériaux fonctionnels innovants fondée sur la Science moléculaire interfaciale multi-échelle » pour T.A. Y.I. est reconnaissant pour une subvention de la JSPS pour défier Recherche exploratoire (16K 14062). S.T. Merci la JSPS Young Scientist Fellowship.
1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate, 98% | TCI | E0494 | |
4-Cyano-4'-pentyloxybiphenyl, 98% | TCI | C1551 | |
Diamond tipped glass cutter | AS ONE | 6-539-05 | |
Dichloromethane, 99.5% | KANTO CHEMICAL | 10158-2B | HPLC grade |
Differential Scanning Calorimeter | METTLER TOLEDO | DSC 1 | |
Digital microscope | KEYENCE | VHX-5000 | |
Extran MA01 | Merck | 107555 | |
Fully ITO-coated glass plate | Costum order, Resistance: ~30Ω | ||
Glass beads | Thermo Fisher Scientific | 9005 | 5 ± 0.3 μm in diameter |
Hot stage | INSTEC | mK1000 | |
ITO-patterned glass plate | Costum order, Resistance: ~30Ω | ||
Oil rotary vacuum pump | SATO VAC | TSW-150 | Pressure: ~5 Pa |
Optical adhesive | Noland | NOA81 | |
Poly(3,4-ethylenedioxythiophene), bis-poly(ethyleneglycol), lauryl terminated | Sigma Aldrich | 687316 | 0.7 wt% (dispersion in nitromethane) |
Potentiostat | TOHO TECHNICAL RESEARCH | PS-08 | |
Rubbing machine | EHC | MRJ-100S | |
Spectrophotometer | JASCO | V-670 UV/VIS/NIR | |
Spin coater | MIKASA | 1H-D7 | |
Ultrapure water | Merck | Milli-Q Integral 3 | |
Ultrasonic bath | AS ONE | ASU-2 | Power: 40 W |
Ultrasonic soldering | KURODA TECHNO | SUNBONDER USM-IV | |
UV lamp | AS ONE | SLUV-4 | Power: 4 W |