La producción eficiente de hidrógeno solar se ha realizado recientemente en sistemas de semiconductores-electrocatalizadores funcionalizados en una media célula fotoelectroquímica en un entorno de microgravedad en la Torre de Gota de Bremen. Aquí, informamos de los procedimientos experimentales para la fabricación del dispositivo semiconductor-electrocatalyst, detalles de la configuración experimental en la cápsula de caída y la secuencia experimental durante la caída libre.
Los vuelos espaciales a largo plazo y las plataformas de investigación cis-lunar requieren un hardware de soporte vital sostenible y ligero que pueda emplearse de forma fiable fuera de la atmósfera de la Tierra. Los llamados dispositivos de “combustible solar”, actualmente desarrollados para aplicaciones terrestres en la búsqueda de la realización de una economía energética sostenible en la Tierra, proporcionan sistemas alternativos prometedores a las unidades de revitalización del aire existentes empleadas en el Espacio Internacional (ISS) a través de la división fotoelectroquímica de agua y la producción de hidrógeno. Un obstáculo para la electrólisis del agua (foto-) en entornos de gravedad reducida es la ausencia de flotabilidad y la consiguiente y obstaculizada liberación de burbujas de gas de la superficie del electrodo. Esto provoca la formación de capas de espuma de burbuja de gas en proximidad a la superficie del electrodo, lo que conduce a un aumento de la resistencia ohmica y la pérdida de eficiencia celular debido a la reducción de la transferencia de masa de sustratos y productos hacia y desde el electrodo. Recientemente, hemos demostrado una producción eficiente de hidrógeno solar en entornos de microgravedad, utilizando un sistema semiconductor-electrocatalizador integrado con fosfuro indium de tipo p como absorbedor de luz y un electrocatalizador de rodio. Mediante la nanoestructuración del electrocatalizador utilizando litografía de nanoesfera de sombra y, por lo tanto, la creación de “puntos calientes” catalíticos en la superficie del fotoelectrodo, podríamos superar las limitaciones de la carbonescencia de la burbuja de gas y la transferencia de masa y demostrar que el hidrógeno eficiente demostró producción a altas densidades de corriente en gravedad reducida. Aquí, los detalles experimentales se describen para los preparativos de estos dispositivos nanoestructurados y más adelante, el procedimiento para sus pruebas en el entorno de microgravedad, realizado en la Torre de Caída de Bremen durante 9.3 s de caída libre.
Nuestra atmósfera en la Tierra se forma a través de la fotosíntesis oxigenada, un proceso de 2.300 millones de años que convierte la energía solar en hidrocarburos ricos en energía, liberando oxígeno como subproducto y utilizando agua y CO2 como sustratos. Actualmente, los sistemas fotosintéticos artificiales siguiendo el concepto de esquema Z energético de catálisis y transferencia de carga en fotosíntesis natural se realizan en sistemas semiconductores-electrocatalizadores, mostrando hasta ahora una eficiencia de conversión de energía a hidrógeno del 19 %1,2,3. En estos sistemas, los materiales semiconductores se emplean como absorbedores de luz que están recubiertos con una capa delgada y transparente de electrocatalizadores4. La intensa investigación en este campo es promovida por la búsqueda mundial de sistemas de energía renovable con hidrógeno e hidrocarburos de cadena larga que hacen excelentes candidatos para un suministro de combustible alternativo. También se enfrentan obstáculos similares en misiones espaciales a largo plazo, donde no es posible un reabastecimiento de recursos de la Tierra. Se requiere un hardware de soporte vital confiable, empleando una unidad de revitalización del aire eficiente que proporciona alrededor de 310 kg de oxígeno por miembro de la tripulación por año, sin tener en cuenta las actividades extravehiculares5. Un dispositivo de división de agua solar eficiente, capaz de producir oxígeno e hidrógeno o reducir el dióxido de carbono asistido por energía solar y en un sistema monolítico proporcionaría una ruta alternativa y más ligera a las tecnologías actualmente empleadas en la ISS: la unidad de revitalización del aire se compone de un sistema separado con un electrolizador alcalino, un concentrador de dióxido de carbono de amina sólida y un reactor Sabatier para la reducción delCO2.
Sin precedentes, realizamos una producción eficiente de hidrógeno solar en el entorno de microgravedad, proporcionada por un 9,3 s durante la caída libre en la Torre de Caída de Bremen (ZARM, Alemania)6. Utilizando el fosfuro indium de tipo p como un absorbedor de luz semiconductor7,8 recubierto con un electrocatalizador de rodio nanoestructurado, superamos las limitaciones de transferencia de masa de sustrato y producto hacia y desde la superficie del fotoelectrodo, que es un obstáculo en entornos de gravedad reducida debido a la ausencia de flotabilidad9,10. La aplicación de la litografía de la nanfera desombra 11,12 directamente en la superficie del fotoelectrodo permitió la formación de “puntos calientes” catalíticos de rodio, que impidieron la carbonescencia de la burbuja de gas de hidrógeno y la formación de una capa de espuma en proximidad de la superficie del electrodo.
Aquí, proporcionamos detalles experimentales de la preparación del fotoelectrodo p-InP incluyendo el grabado y acondicionamiento de la superficie, seguido de la aplicación de litografía de la nanoesfera de sombra en la superficie del electrodo y la fotoelectrodeposición del rodio nanopartículas a través de las esferas de poliestireno. Además, se describe la instalación experimental en la cápsula de caída en la Torre de entrega de Bremen y se proporcionan detalles de la secuencia experimental durante los 9.3 s de caída libre. La entrega de muestras y el manejo antes y después de cada gota se describen, así como la preparación de la cápsula de caída y su equipo para operar fuentes de iluminación, potenciatos, controles de obturador y cámaras de video bajo el mando.
Para la preparación de fotoelectrodos, es importante minimizar la exposición al oxígeno entre el procedimiento de grabado y acondicionamiento y purgar el HCl de 0,5 M antes de su uso durante unos 10 – 15 minutos con nitrógeno. Una vez acondicionadas las muestras, se pueden almacenar en atmósfera de nitrógeno en tubos cónicos de 15 ml durante unas horas para permitir el transporte de la muestra y/o el tiempo de preparación de las máscaras de partículas de poliestireno. Con el fin de lograr una disposición homog…
The authors have nothing to disclose.
K.B. reconoce la financiación del programa de becas de la Academia Nacional Alemana de Ciencias Leopoldina, la subvención LPDS 2016-06 y la Agencia Espacial Europea. Además, le gustaría agradecer al Dr. Leopold Summerer, al Equipo de Conceptos Avanzados, Alan Dowson, al Dr. Jack van Loon, al Dr. Gabor Milassin y al Dr. Robert Lindner (ESTEC), Robbert-Jan Noordam (Notese) y al Prof. Harry B. Gray (Caltech) por su gran apoyo. M.H.R. agradece el generoso apoyo del Prof. Nathan S. Lewis (Caltech). K.B. y M.H.R. reconocen el apoyo del Instituto Beckman del Instituto de Tecnología de California y el Centro de Investigación de Materiales Moleculares. El equipo de PhotoEChem reconoce en gran medida la financiación del Centro Aeroespacial Alemán (Deutsches Zentrum f’r Luft- und Raumfahrt e.V.) para el proyecto No. 50WM1848. Además, M.G. reconoce la financiación del Programa de Equipo Innovador y Emprendedor de Guangdong titulado “Nanomateriales plasmónicos y puntos cuánticos para la gestión de la luz en dispositivos optoelectrónicos” (n.o 2016ZT06C517). Además, el equipo de autores reconoce en gran medida el esfuerzo y el apoyo del equipo de ZARM con Dieter Bischoff, Torsten Lutz, Matthias Meyer, Fred Oetken, Jan Siemers, el Dr. Martin Castillo, Magdalena Thode y el Dr. Thorben Koemann. También está agradecido por las discusiones esclarecedoras con el Prof. Yasuhiro Fukunaka (Universidad de Waseda), el Prof. Hisayoshi Matsushima (Universidad de Hokkaido) y el Dr. Slobodan Mitrovic (Lam Research).
12.7 mm XZ Dovetail Translation Stage with Baseplate, M4 Taps (4 x) | Thorlabs | DT12XZ/M | |
Beam splitters (2 x) | Thorlabs | CM1-BS013 | 50:50 400-700nm |
Beamsplitters (2 x) | Thorlabs | CM1-BS014 | 50:50 700-1100nm |
Ohmic back contact: 4 nm Au, 80 nm Zn, 150 nm Au | Out e.V., Berlin, Germany | https://www.out-ev.de/english/index.html | Company provides custom made ohmic back contacts |
Glass tube, ca. 10 cm, inner diameter about 4 mm | E.g., Gaßner Glasstechnik | Custom made | |
p-InP wafers, orientation 111A, Zn doping concentration: 5 x 10^17 cm^-3 | AXT Inc. Geo Semiconductor Ltd. Switzerland | Custom made | |
Photoelectrochemical cell for terrestrial experiments | E.g., glass/ materials workshop | Custom made | |
Matrox 4Sight GPm (board computer) | Matrox imaging | Ivy Bridge, 7 x Cable Ace power I/O HRS 6p, open 10m, Power Adapter for Matrox 4sight GPm, Samsung 850 Pro 2,5" 1 TB, Solid State Drive in exchange for the 250Gb hard drive | |
2-propanol | Sigma Aldrich | I9516-500ML | |
35mm Kowa LM35HC 1" Sensor F1.4 C-mount (2 x) | Basler AG | ||
Acetone | Sigma Aldrich | 650501-1L | |
Ag/AgCl (3 M KCl) reference electrode | WPI | DRIREF-5 | |
Aluminium breadboard, 450 mm x 450 mm x 12.7mm, M6 Taps (2 x) | Thorlabs | MB4545/M | |
Beaker, 100 mL | VWR | 10754-948 | |
Black epoxy | Electrolube | ER2162 | |
Bromine | Sigma Aldrich | 1.01945 EMD Millipore | |
Colour camera (2 x) | Basler AG | acA2040-25gc | |
Conductive silver epoxy | MG Chemicals | 8331-14G | |
Copper wire | E.g., Sigma Aldrich | 349224-150CM | |
Ethanol | Sigma Aldrich | 459844-500ML | |
Falcon tubes, 15 mL | VWR | 62406-200 | |
Glove bags | Sigma Aldrich | Z530212 | |
Hydrochloric acid (1 M) | Sigma Aldrich | H9892 | |
Magnetic stirrer | VWR | 97042-626 | |
Methanol | Sigma Aldrich | 34860-100ML-R | |
Microscope slides | VWR | 82003-414 | |
MilliQ water | |||
NIR camera (2 x) | Basler AG | acA1300-60gm | |
Nitrogen, grade 5N | Airgas | NI UHP300 | |
Ø 1" Stackable Lens Tubes (6 x) | Thorlabs | SM1L03 | |
O2 Plasma Facility | |||
OEM Flange to SM Thread Adapters (4 x) | Thorlabs | SM1F2 | |
Parafilm | VWR | 52858-000 | |
Pasteur pipette | VWR | 14672-380 | |
Perchloric acid (1 M) | Sigma Aldrich | 311421-50ML | |
Petri dish | VWR | 75845-546 | |
Photoelectrochemical cell for microgravity experiments | E.g., glass/ materials workshop | ||
Polystyrene particles, 784 nm, 5 % (w/v) | Microparticles GmbH | 0.1-0.99 µm size (50 mg/ml): 10 ml, 15 ml, 50 ml | |
Potentiostats (2 x) | Biologic | SP-200/300 | |
Pt counter electrode | ALS-Japan | 12961 | |
Rhodium (III) chlorid | Sigma Aldrich | 520772-1G | |
Shutter control system (2 x) | |||
Silicon reference photodiode | Thorlabs | FDS1010 | |
Sodium chlorid | Sigma Aldrich | 567440-500GM | |
Stands and rods to fix the cameras | VWR | ||
Sulphuric acid (0.5 M) | Sigma Aldrich | 339741-100ML | |
Telecentric High Resolution Type WD110 series Type MML1-HR110 | Basler AG | ||
Toluene | Sigma Aldrich | 244511-100ML | |
Various spare beakers and containers for leftover perchloric acid etc for the drop tower | VWR | ||
W-I lamp with light guides (2 x) | Edmund Optics | Dolan-Jenner MI-150 Fiber Optic Illuminator | |
CM-12 electron microscope with a twin objective lens, CCD camera (Gatan) system and an energy dispersive spectroscopy of X- rays (EDS) system) | Philips | ||
Dimension Icon AFM, rotated symmetric ScanAsyst-Air tips (silicon nitride), nominal tip radius of 2 nm | Bruker |