Las interacciones proteína-proteína son críticas para los sistemas biológicos, y estudios de la cinética de Unión proporcionan penetraciones en la dinámica y función de complejos de la proteína. Se describe un método que cuantifica los parámetros cinéticos de una proteína compleja mediante la transferencia de energía de resonancia de la fluorescencia y la técnica de flujo detenido.
Las proteínas son los principales operadores de los sistemas biológicos, y generalmente interactúan con otros macro o pequeñas moléculas para llevar a cabo sus funciones biológicas. Estas interacciones pueden ser altamente dinámicas, lo que significa las subunidades interactúan constantemente asociadas y disociadas en determinados tipos. Medir la afinidad usando técnicas tales como desplegable cuantitativa revela la fuerza de la interacción, estudiando la cinética de Unión proporciona penetraciones en cómo rápidamente se produce la interacción y cuánto tiempo puede existir cada complejo. Además, medir la cinética de la interacción en presencia de un factor adicional, como un factor de intercambio de proteínas o una droga, ayuda a revelar el mecanismo por el cual la interacción está regulada por el factor conocimiento importante para la avance de la investigación biológica y médica. Aquí, describimos un protocolo para la medición de la cinética de unión de una proteína compleja que tiene una tasa alta asociación intrínseca y puede disociarse rápidamente por otra proteína. El método utiliza la transferencia de energía de resonancia de la fluorescencia para divulgar la formación del complejo de la proteína in vitro, y permite la rápida asociación y disociación del complejo en tiempo real en un Fluorímetro de flujo detenido. Usando este análisis, se cuantifican las constantes de tarifa de asociación y disociación de la proteína del complejo.
En última instancia se llevan a cabo actividades biológicas de proteínas, más que interactuar con otros para las funciones biológicas apropiadas. Usando un enfoque computacional, el importe total de las interacciones proteína-proteína en humanos se estima que 650.000 ~1, y la interrupción de estas interacciones a menudo conduce a enfermedades2. Debido a su papel esencial en el control de procesos celulares y organismos, se han desarrollado numerosos métodos para estudiar interacciones de proteínas, tales como levadura dos-híbrido, complementación bimolecular de la fluorescencia, split-luciferase complementación y co-inmunoprecipitación ensayo3. Mientras que estos métodos son buenos para descubrir y confirmar las interacciones proteína-proteína, son generalmente no-cuantitativos y así proporcionar información limitada sobre la afinidad entre los socios de proteínas interactuantes. Cuantitativas desplegables pueden utilizarse para medir la afinidad de unión (por ejemplo, la constante de disociación Kd), pero no mide la cinética de la Unión, ni se puede aplicar cuando el Kd es muy baja debido a una inadecuada relación señal a ruido4. Espectroscopia de la resonancia (SPR) de plasmón superficial cuantifica la cinética de Unión, pero se requiere una superficie específica y la inmovilización de un reactivo en la superficie, que puede potencialmente cambiar la propiedad de la fijación del reactivo5. Por otra parte, es difícil para el SPR medir rápida asociación y disociación tarifas5y no es apropiado utilizar SPR para caracterizar el evento de intercambio de subunidades de la proteína en un complejo proteico. Aquí, describimos un método que permite medir las tasas de proteínas complejo montaje y desmontaje en una escala de tiempo de milisegundos. Este método era fundamental para determinar el papel de Cullin –unsociado –Nedd8 –dissociated proteína 1 (Cand1) como el F-box proteína exchange factor6,7.
Cand1 regula la dinámica de Skp1•Cul1•F-caja proteina (SCF) E3 ligasas, que pertenecen a la gran familia de ligasas de ubiquitina Cullin-anillo. Contratando consiste en el cullin Cul1, que une a la proteína de dominio de anillo Rbx1, y una proteína F-box intercambiable, que recluta a los sustratos y se une Cul1 a través de la proteína adaptador Skp18. Como una ligasa E3, SCF cataliza la conjugación de ubiquitina a su sustrato, y se activa cuando el sustrato es reclutado por la proteína F-box, y cuando Cul1 es modificado por la proteína ubiquitina-como Nedd89. Cand1 se une Cul1 sin modificar, y en Unión, altera tanto la Asociación de la proteína Skp1•F-caja con Cul1 y la conjugación de Nedd8 Cul110,11,12,13. Como resultado, Cand1 parece ser un inhibidor de la actividad SCF in vitro, pero la deficiencia de Cand1 en organismos causó defectos que sugiere un papel positivo de Cand1 en la regulación de las actividades SCF en vivo14,15,16 , 17. esta paradoja fue finalmente explicada por un estudio cuantitativo que reveló las interacciones dinámicas entre proteína Cul1, Cand1 y caja de Skp1•F. Usando análisis de transferencia (traste) de energía de resonancia de la fluorescencia que detectan la formación de los complejos SCF y Cul1•Cand1, la asociación y disociación tasa constantes (kel y kfuera, respectivamente) fueron medido individualmente. Las mediciones revelaron que Cand1 y caja de Skp1•F forma muy apretado complejo proteico con Cul1 pero el kfuera de SCF es aumentado por Cand1 y el kfuera de Cul1•Cand1 es aumentado por proteínas de Skp1•F-caja de6,7. Estos resultados proporcionan la ayuda inicial y fundamental para definir el papel de Cand1 como un factor de intercambio de proteína, que cataliza la formación de nuevos complejos SCF a través del reciclaje Cul1 de los viejos complejos SCF.
Aquí, presentamos el procedimiento de desarrollar y utilizar el ensayo de traste para estudiar la dinámica de los complejos de Cul1•Cand17, y el mismo principio puede aplicarse para estudiar la dinámica de diversas biomoléculas. TRASTE se produce cuando un donante está entusiasmado con la longitud de onda adecuada, y con el espectro de excitación superposición el espectro de emisión del donador aceptor está presente dentro de una distancia de 10-100 Å. El estado excitado se transfiere al aceptador, de tal modo disminuyendo la intensidad de donantes y aumentar la intensidad aceptador del18. La eficacia de traste (E) depende del radio de Förster (R0) y la distancia entre el donador y aceptor fluoróforos (r) y está definida por: E = R06/ (R0 6 + r6). El radio de Förster (R0) depende de algunos factores, incluyendo la orientación angular del dipolo, la superposición espectral de la pareja donante-receptor y la solución utilizada19. Para aplicar el ensayo de traste en un Fluorímetro de flujo detenido, que supervisa el cambio de la emisión del donador en tiempo real y permite medidas de rápida kel y kfuera, es necesario establecer eficiente traste que resultados en una reducción significativa de emisiones de donantes. Por lo tanto, diseño eficiente traste seleccionando el par apropiado de tintes fluorescentes y los sitios de las proteínas de la blanco para fijar los tintes es importante y se discutirá en el presente Protocolo.
TRASTE es un fenómeno físico que es de gran interés para el estudio y comprensión de los sistemas biológicos19. Aquí, presentamos un protocolo para probar y usar trastes para estudiar la cinética de unión de dos proteínas interactuantes. Al diseñar el traste, se consideraron tres factores principales: el solapamiento espectral entre donantes emisión y aceptador de la excitación, la distancia entre los dos fluoróforos y la orientación del dipolo de los fluoróforos28…
The authors have nothing to disclose.
Agradecemos a Ou Shu Shan (California Institute of Technology) perspicaz discusión sobre el desarrollo de la prueba de traste. M.G., Y.Z. y los X.L. fueron financiados por fondos de inicio de la Universidad de Purdue a Y.Z. y X.L.This trabajo fue apoyado en parte por una subvención de semillas del centro de la Universidad de Purdue para Biología de plantas.
Anion exchange chromatography column | GE Healthcare | 17505301 | HiTrap Q FF anion exchange chromatography column |
Benchtop refrigerated centrifuge | Eppendorf | 2231000511 | |
BL21 (DE3) Competent Cells | ThermoFisher Scientific | C600003 | |
Calcium Chloride | Fisher Scientific | C78-500 | |
Cation exchange chromatography column | GE Healthcare | 17505401 | HiTrap SP Sepharose FF |
Desalting Column | GE Healthcare | 17085101 | |
Floor model centrifuge (high speed) | Beckman Coulter | J2-MC | |
Floor model centrifuge (low speed) | Beckman Coulter | J6-MI | |
Fluorescence SpectraViewer | ThermoFisher Scientific | https://www.thermofisher.com/us/en/home/life-science/cell-analysis/labeling-chemistry/fluorescence-spectraviewer.html | |
FluoroMax fluorimeter | HORIBA | FluoroMax-3 | |
FPLC | GE Healthcare | 29018224 | |
GGGGAMC peptide | New England Peptide | custom synthesis | |
Glutathione beads | GE Healthcare | 17075605 | |
Glycerol | Fisher Scientific | G33-500 | |
HEPES | Fisher Scientific | BP310-100 | |
Isopropyl-β-D-thiogalactoside (IPTG) | Fisher Scientific | 15-529-019 | |
LB Broth | Fisher Scientific | BP1426-500 | |
Ni-NTA agarose | Qiagen | 30210 | |
Ovalbumin | MilliporeSigma | A2512 | |
pGEX-4T-2 vector | GE Healthcare | 28954550 | |
Protease inhibitor cocktail | MilliporeSigma | 4693132001 | |
Reduced glutathione | Fisher Scientific | BP25211 | |
Refrigerated shaker | Eppendorf | M1282-0004 | |
Rosetta Competent Cells | MilliporeSigma | 70953-3 | |
Size exclusion chromatography column | GE Healthcare | 28990944 | Superdex 200 10/300 GL column |
Sodium Chloride (NaCl) | Fisher Scientific | S271-500 | |
Stopped-flow fluorimeter | Hi-Tech Scientific | SF-61 DX2 | |
TCEP·HCl | Fisher Scientific | PI20490 | |
Thrombin | MilliporeSigma | T4648 | |
Tris Base | Fisher Scientific | BP152-500 | |
Ultrafiltration membrane | MilliporeSigma | UFC903008 | Amicon Ultra-15 Centrifugal Filter Units, Ultra-15, 30,000 NMWL |