Как один из важных физических параметров в полупроводниках перевозчик жизни измеряется здесь через протокол, используя метод распада фотопроводимости Микроволновая печь.
Эта работа представляет протокол, используя микроволновой фотопроводимости распада (μ-PCD) для измерения жизни перевозчика в полупроводниковых материалов, особенно SiC. В принципе избыток перевозчиков в полупроводнике, созданного с помощью возбуждения перекомбинируйте с течением времени и, впоследствии, вернуться в состояние равновесия. Постоянная времени этой рекомбинации известен как перевозчик жизни, важным параметром в полупроводниковых материалов и приборов, требует бесконтактные и неразрушающих измерений, идеально достигается μ-PCD. Во время облучения образца частью микроволновой печи отражается в образце полупроводников. Микроволновая печь отражательная способность зависит от проводимости образца, который приписывается перевозчиков. Таким образом время распада избыточных носителей можно наблюдать через определение интенсивности отраженного микроволновой, чьи кривой распада могут быть проанализированы для оценки существования перевозчика. Результаты подтверждают пригодность μ-PCD протокол измерения жизни перевозчика в полупроводниковых материалов и приборов.
Избыток перевозчиков в полупроводниках оптически рады путем инъекций фотонов с энергии больше, чем разрыв между диапазонами проводимости и валентной. Затем, возбужденных избыток перевозчиков, исчезают электронно – дырочных рекомбинации в рамках постоянной времени, известный как перевозчик жизни, который существенно влияет на производительность полупроводниковых приборов во время операции. Как один из важных параметров для полупроводниковых приборов и материалов перевозчик жизни очень чувствителен к наличие дефектов в этих материалах и далее требует удобный метод оценки. J. Уорман и M. Kunst развитых переходных технику, они назвали время решена Микроволновая печь электропроводности (TRMC), которая включает микроволновой поглощения следовать заряда перевозчик динамика в полупроводниках1. Другие исследователи предложили переходных фото проводимости (TPC), иначе известный как микроволновая печь фотопроводимости распада (μ-PCD), который обычно принимается материал квалификации техника в полупроводниковой промышленности благодаря своей бесконтактные и неразрушающих измерений существования перевозчика. В частности, для карбида кремния (SiC), применяются три основных методов: µ-PCD, время решена, TR-фотолюминесценция и время решена Франко перевозчик поглощения (TR-FCA)2,3,4,5 6, ,7. Среди этих методов µ-PCD является наиболее широко занятых, потому что по сравнению с двумя другими как она проявит равнодушие шероховатости поверхности (т.е., измеримые для любого заданного различные поверхности шероховатость8,9,10 ) и высокий сигнал чувствительности для возбужденных перевозчиков (то есть с помощью компонента оптимальный Микроволновая печь). В общем µ-PCD был предпочтительным для измерения жизни перевозчика в НИЦ и другие полупроводниковые материалы2,5,6,11,12,13 ,14,,1516,,1718,19.
Здесь подробно протокол измерений и принцип μ-PCD1,,2021 . В принципе она использует микроволновой отражение как зонд. Здесь Микроволновая отражения образца R(σ) эквивалентен соотношение интенсивности отраженного микроволновой P(σ) и инцидент Микроволновая интенсивности Pв выраженную уравнение 1:
(1)
При облучении лазерного импульса, проводимости образца σ изменения σ + Δσ; Аналогичным образом R (σ) преобразования R(σ + Δσ). Таким образом ΔR задается уравнение 2:
(2)
В приближении возмущений (небольшой Δσ), R(σ + Δσ) разработан в ряд Тейлора приносить
(3)
в то время как становится Δσ
, (4).
где q -элементарный заряд, μp является мобильность отверстие, μn — подвижность электронов, а Δp – концентрация на избыток перевозчика. От предыдущей уравненийΔR и Δp связаны
. (5)
Зависимость отражения Микроволновая печь на избыток перевозчик концентрации позволяет μ-PCD соблюдать время распада избыточных перевозчиков, которые мы можем использовать для оценки несущей жизни полупроводниковых материалов.
В протоколе μ-PCD шаг 4.7 является наиболее важным моментом. E – H тюнер был включен с подвижных короткого замыкания в плоскости E и H, соответственно. Таким образом перемещение короткого замыкания тюнер E или H тюнер изменения амплитуды и фазы отраженной СВЧ и максимизирует амплитуда сигнала. Тюнинг имеет большое влияние на осциллограмме распада кривой и должны строго выполняться. В случае слабого сигнала, где настройки может быть сложным может использоваться несколько десятков тюнинг средние. Не тюнинг, μ-PCD распада кривые не наблюдаемый; наблюдается только шумовой сигнал осциллографа. Рисунок 2 показывает Осциллограф осциллограмм в таком случае.
Это легко для измерения высоким сопротивлением образцы, как нет нижнего предела проводимости. Когда сопротивление образца является низким или образца толщиной, скин-эффект микроволновой печи не является незначительным. Расстояние до тех пор, пока интенсивность электрического поля СВЧ становится 1/e раз называется глубиной кожи , который выражается уравнением 9:
(9)
ω-угловая частота СВЧ, где ρε и μ представляют диэлектрическая проницаемость образца, сопротивление и проницаемость, соответственно. В случае Si и SiC приблизительное δ значения для 10 ГГц микроволновых печей были 9 мм на 50 Ω∙cm, 2 мм на 10 Ω∙cm, 500 мкм на 1 Ω∙cm и 150 мкм на 0,1 Ω∙cm. Таким образом измерения для образцов с типичными толщины (несколько сотен микрон) на менее 0,1 Ω∙cm будет терять точность δ . С другой стороны микроволновой печью и оптического излучения инцидент от противоположные пластины в настоящем Протоколе. Незначительный эффект кожи показывает лучше микроволновой и оптического излучения с той же стороны.
Нижние пределы зависит от сопротивления и толщины образца, вытекающие из его взаимодействия с СВЧ. Для образцов, высоким сопротивлением типичный нижних пределов избыточных носителей составляет порядка 1012 см−3. С другой стороны электронно – дырочных рассеяния должны рассматриваться на избыток перевозчиков больше чем 1016 см−3, как описано в ref. 13.
Μ-PCD кривых распада стал нежный на высоких возбуждения плотности за счет unproportionality Микроволновая печь отражательная способность к концентрации избыточного перевозчик таким образом, что уравнение (3) потеряет свою действительность по13,25,26 и τ1/e будет переоценить. На рисунке 8 показана кривая распада μ-PCD химического Механическая полировка, обработка поверхности n типа 4 H-SiC с возбуждением на Si лицо, 266 Нм под возбуждения высокой интенсивности.
Кроме того резолюции время зависит от производительности аппарата измерения как источник возбуждения, осциллограф и усилитель. Например, в этом исследовании, аппарат состоял из импульсного лазера с длительностью импульса 1 НС как источник возбуждения и осциллографа, имея частот 500 МГц. Следовательно, минимальный измеримые жизни оценивается в 2 НС.
Как упоминалось ранее, μ-PCD является очень полезным для определения характеристик полупроводниковых приборов, таких как Си. Тем не менее его приложение может быть расширено с другими материалами, например, в фотоактивного материалах, включая TiO227,28,29,30.
Кроме того помимо μ-PCD, TR-PL2 и TR-FCA представил в предыдущих разделах являются другие методы измерения жизни двух перевозчика. TR-PL отмечает изменение времени фотолюминесценция вызванных перевозчика рекомбинации в то время как TR-FCA отмечает время изменения зонда Светлая абсорбциа4. В частности Франко перевозчик поглощение происходит, когда свет с энергией меньше, чем разрыв группы облученных во время возбуждения перевозчик3. Тем не менее по сравнению с этими двумя, μ-PCD непосредственно наблюдает электропроводность, Микроволновая и имеет высокий шероховатости поверхности и чувствительность сигнала, что делает его более идеальный метод для измерения жизни перевозчика для полупроводниковых устройств приложений.
The authors have nothing to disclose.
Эта работа была поддержана технологический институт Нагоя, Япония.
n-type 4H-SiC epilayer | Ascatron AB http://ascatron.com/ | Sample | |
266 nm pulsed laser | CryLaS GmbH http://www.crylas.de/ | FQSS 266-50 | Excitation light source |
Photodiode | THORLABS https://www.thorlabs.com/index.cfm | DET10A/M | Trigger signal detection |
Schottky barrier diode | ASI http://www.advancedsemiconductor.com/ | 1N23WE | Reflected microwave detection |
Gun diode | Microsemi https://www.microsemi.com/ | MO86751C | Microwave generation source |
E-H tuner | SPC ELECTRONICS CORPORATION http://www.spc.co.jp/index.html | microwave component | |
Circulator | SPC ELECTRONICS CORPORATION http://www.spc.co.jp/index.html | microwave component | |
Rectangular waveguide | SPC ELECTRONICS CORPORATION http://www.spc.co.jp/index.html | microwave component | |
Double ridge waveguide | SPC ELECTRONICS CORPORATION http://www.spc.co.jp/index.html | microwave component | |
Crystal mount | SPC ELECTRONICS CORPORATION http://www.spc.co.jp/index.html | microwave component | |
Acetone | KANTO CHEMICAL CO.,INC. https://www.kanto.co.jp/ | GE00001 | Sample cleaning |
Sulfuric acid | KANTO CHEMICAL CO.,INC. https://www.kanto.co.jp/ | GE00257 | Acidic aqueous solution |
Hydrochloric acid | KANTO CHEMICAL CO.,INC. https://www.kanto.co.jp/ | GE00238 | Acidic aqueous solution |
Hydrogen fluoride | KANTO CHEMICAL CO.,INC. https://www.kanto.co.jp/ | 18083-1B | Acidic aqueous solution |
Sodium hydroxide | KANTO CHEMICAL CO.,INC. https://www.kanto.co.jp/ | 37184-00 | Alkaline aqueous solution |
Sodium sulfate | KANTO CHEMICAL CO.,INC. https://www.kanto.co.jp/ | 37280-00 | Neutral aqueous solution |