Здесь мы предоставляем подробные протоколы для орального применения антибиотиков для сбора фекальных проб, экстракции ДНК и количественного определения фекальных бактерий, мышей, ПЦР.
Кишка микробиоты имеет центральное влияние на здоровье человека. Микробные дисбиоза ассоциируется с многих общих immunopathologies, таких как воспалительные заболевания кишечника, астмы и артрита. Таким образом понимание механизмов, лежащих в основе перекрестных микрофлору иммунной системы имеет решающее значение. Антибиотикотерапия, при пособничестве Распродажа патогена, также вызывает резкие изменения в размер и состав кишечных бактериальных сообществ, которые могут иметь влияние на здоровье человека. Лечение антибиотиками в мышах резюмирует воздействия и долгосрочные изменения в человека микробиоты от антибиотиков пролеченных больных и позволяет расследования механистический связей между изменениями в микробных сообществ и функции иммунных клеток. Хотя были описаны несколько методов для лечения антибиотиками мышей, некоторые из них вызывают обезвоживания в тяжелой форме и потеря веса, затрудняет интерпретацию данных. Здесь мы предлагаем два протокола для устных антибиотиков, который может использоваться для длительного лечения мышей не вызывая крупные потери веса. Эти протоколы используют комбинации антибиотиков, предназначенных грамположительных и грамотрицательных бактерий и может предоставляться либо ad libitum в питьевой воде или пероральная затравка. Кроме того мы описывают метод количественного определения плотности микробов в фекальных пробах, ПЦР, который может использоваться для проверки эффективности лечения антибиотиками. Сочетание этих подходов обеспечивает надежную методологию для манипуляции кишечной микробиоты и изучению эффектов лечения антибиотиками в мышей.
У млекопитающих слизистой ЖКТ представляет собой уникальную среду, колонизирована очень сложная смесь микроорганизмов, которые устанавливают бесшёрстных отношения с принимающей. Система обороны слизистой оболочки кишечника включает эпителиального пласта и множество иммунных клеток, которые ограничивают Комменсалами в кишечнике при сохранении их количества и разнообразия. И наоборот синантропных организмов необходимы для развития полностью функциональной иммунной системы. Хотя взаимодействие между принимающей и синантропных бактерии обычно полезны, он становится все более очевидным, что что dysregulated иммунной системы микробиоты помех может способствуют развитию хронических воспалительных заболеваний, такие asinflammatory кишечника болезни, артрит, астма1,2.
Кишка микробиоты могут быть изменены различные факторы, но возможно наиболее радикальные изменения вызванные лечения антибиотиками, которые сильно изменяет размер и состав бактериальных сообществ3,4. Хотя преимущества антибиотики для лечения инфекции являются несомненными, Микробиота изменений, вызванных воздействием антибиотика в организме человека также может изменить иммунной защиты, которые могут привести к пагубное воздействие на здоровье. Например, лечение антибиотиками в организме человека связано с повышенным риском Clostridium difficile-индуцированной понос, астма и некоторых видов рака3. Лечение антибиотиками в мышах резюмирует воздействия и долгосрочные изменения в кишечнике общин антибиотик лечение больных и позволило расследования механистический связей между изменениями в микробных сообществ и функции иммунных клеток. Однако некоторые доклады показали, что введение антибиотиков на питьевой воде ad libitum приводит к потере веса очень заметно мышей воздерживаться от питьевой воды, предположительно из-за его неприятный вкус5,6. Таким образом в этих моделях тяжелой дегидратации с пероральным антибиотикам может осложнить интерпретации экспериментов, стремясь определить эффект лечения антибиотиками в функции иммунных клеток.
Несколько подходов может использоваться для изучения размер и состав микробных сообществ в кишечной отсека7. Следующее поколение технологии виртуализации предоставили бесценные данные на этот вопрос8, однако эти методы являются относительно дорогими и требуют экспертных bioinformatic анализы для интерпретации данных. С другой стороны традиционная культура микробиологические методы позволяют обнаружение видов бактерий, но они имеют низкую чувствительность, и значительная часть синантропных бактерий (особенно анаэробов) очень сложно или невозможно возделывать с в настоящее время доступные методы8. Методы количественных полимеразной цепной реакции (ПЦР) все чаще используются для количественной оценки и идентификации видов фекальных бактерий, поскольку они обеспечивают быстрый и надежный культуры независимые мера общей микробной нагрузки. Соответственно ПЦР методы оказались полезными для изучения изменений в микробиоты, связанные с возрастом или с прогрессированием ряда заболеваний, включая воспалительных кишечника болезни9,10. В соответствии с этим ПЦР методы обеспечивают быстрый и экономически эффективным подходом для проверки влияния различных методов лечения (в том числе антибиотиков) в фекальных бактерий нагрузок и микробиоты композиция10,,1112.
Здесь мы представляем шаг за шагом подробно два различных протоколов для устных антибиотиков для мышей, фекальных проб, экстракции ДНК, подготовке стандартов и количественной оценки бактерий в фекальных пробах по ПЦР. Эти протоколы обеспечивают надежный способ манипулировать кишечную микрофлору у мышей и изучение последствий антибиотикотерапии кишечная гомеостаза и болезней.
Здесь мы предоставляем экспериментальные протоколы для орального применения антибиотиков мышей и количественного определения фекальных бактерий на ПЦР. Комбинация антибиотиков используется в этой цели протокола (содержащий ампициллина, гентамицин, неомицин, метронидазол и ванкомицин) грамположительных и грамотрицательных бактерий, предлагая бактерицидная активность против полный спектр бактерий. Пероральная затравка и введение антибиотиков в питьевой воде значительно уменьшить фекальные бактериальной нагрузки5,6,12. Кроме того оба лечения имеют глубокое воздействие на фенотип мышей, как они развиваются несколько характеристик типичных стерильных мышей, включая снижение селезенки размер и расширенного слепой кишки. Выбор конкретного метода для антибиотиков может возможно зависит от длины эксперимента как метод пероральная затравка требует ежедневной администрации антибиотиков, будучи более трудоемкой и может вызвать больше дискомфорта для Животные в долгосрочной перспективе.
Для введение антибиотиков в питьевой воде необходимо проявлять осторожность с добавлением сахара к антибиотикам смеси как это является решающим фактором для держать мышей от обезвоживания. Несколько групп показали, как введение антибиотиков в питьевой воде (без добавления сахара) приводит к очень тяжелой и быстрой потери веса всех мышей, потеря более 20% от первоначального веса в течение первых нескольких дней эксперимента5 , 6. в наш протокол, использование сахарин основе подсластитель, казалось, быть достаточно, чтобы замаскировать антибиотик вкус в воде и мышей потерял вес в первые несколько дней после антибиотиков, но быстро оправился их веса после этого ( Рисунок 1). Тем не менее, в наших экспериментах 5-10% мышей до сих пор достичь человека конечной точке > 20% потеря базовый вес тела и необходимо быть euthanized. Мы также протестировали на основе сукралоза подсластители, которые полностью не смогли предотвратить обезвоживание мышей (100% мышей потерял > 20% от веса) в то время как другие авторы опубликовали аналогичные сбои на основе Аспартам Заменители сахара5,6. В дополнение к этому, возраст, генетический фон и общего состояния здоровья мышей, используемые для экспериментов следует рассматривать, как они могут повлиять на потерю веса и благополучия животных во время лечения антибиотиками. Таким образом ежедневно в течение первых двух недель устных антибиотиков следует проводить тщательный мониторинг мышей веса и общего состояния здоровья.
ПЦР методы обеспечивают быстрый и экономически эффективным подходом для количественного определения 16S рРНК в фекальных пробах. Однако, следует рассмотреть некоторые ограничения относительно этой техники, в том числе: i) требование надежного стандарт высокого качества; II) дизайн и эффективности ПЦР праймеры; III) тот факт, что микроорганизмы могут иметь номера разные копии гена 16S рРНК, таким образом копии гена не может равняться непосредственно клеток пунктам15. Тем не менее ПЦР является надежной и чувствительной метод, который позволяет быстрый анализ проб фекалий. Этот метод может быть особенно полезным для быстро проверить эффект различных методов лечения (в том числе антибиотиков) в фекальных бактерий нагрузок, как подробно здесь. Кроме того хотя мы предоставляем протокол для количественного определения общего 16S рРНК, этот метод может быть легко адаптирована (путем разработки конкретных грунтовки16) чтобы включить идентификацию индивидуальных бактериальных таксонов, обеспечивая тем самым как количественные, так и качественная информация о микрофлора размера и состава.
Таким образом мы обеспечили два протокола для устных антибиотиков мышей и метод на основе ПЦР для количественного определения антибиотиков индуцированные изменения в фекальных бактерий. Хотя эти протоколы могут далее оптимизированный и в сочетании с другими подходами в соответствии с индивидуальными потребностями экспериментальной, они могут служить быстро, экономически эффективные и надежные инструменты для манипулировать мышиных кишечную микрофлору и изучения последствий антибиотикотерапии кишечная гомеостаза и болезней.
The authors have nothing to disclose.
Эта работа финансировалась Великобритании Совета медицинских исследований (Грант п.б. MR/L008157/1); РЖ была поддержана Мари Кюри Европейская стипендий (H2020-МСКА-если-2015-703639); P.M.B. была поддержана студенчества от Великобритании Совета медицинских исследований и короля колледж Лондона докторской обучения партнерства в биомедицинских науках (MR/N013700/1).
Ampicillin sodium salt | Sigma-Aldrich (Merck) | A9518 | |
Neomycnin trisulfate salt hydrate | Sigma-Aldrich (Merck) | N1876 | |
Metronidazole | Sigma-Aldrich (Merck) | M3761 | |
Vancomycin hydrochloride | Sigma-Aldrich (Merck) | V2002 | |
Gentamicin sulfate salt | Sigma-Aldrich (Merck) | G3632 | |
Tryptone | Sigma-Aldrich (Merck) | T7293 | |
Yeast Extract | Sigma-Aldrich (Merck) | Y1625 | |
NaCL | Sigma-Aldrich (Merck) | S7653 | |
Sweetener Sweet'n Low | Sweet'N Low | Available in the UK from Amazon.co.uk | |
X-Gal (5-brom-4-chloro-3-indoyl B-D-galactopyranoside) | Fisher scientific | 10234923 | |
Phosphate Buffered Saline | Thermo Fisher Scientific (Gibco) | 10010023 | |
Ultrapure Agarose | Thermo Fisher Scientific (Invitrogen) | 16500500 | |
RT-PCR grade water | Thermo Fisher Scientific (Invitrogen) | AM9935 | |
Phusion High-Fidelity DNA Polymerase | New England BioLabs | M0530 | |
Deoxynucleotide (dNTP) Solution Mix | New England BioLabs | N0447 | |
iTaq Universal SYBR Green Supermix | Bio-Rad | 1725124 | with ROX |
TOPO TA cloningTM for sequencing | Thermo Fisher Scientific (Invitrogen) | 450030 | |
QIAamp fast DNA Stool mini kit | Qiagen | 51604 | |
QIAprep spin Miniprep kit | Qiagen | 27106 | |
QIAquick gel extraction kit | Qiagen | 28704 | |
Syringe filter 0.45µm | Fisher scientific | 10460031 | |
Swann-MortonTM Carbon steel sterile scalpel blades | Fisher scientific | 11792724 | |
Syringe (1 ml) | BD Plastipak | 303172 | |
Syringe (20 ml) | BD Plastipak | 300613 | |
1.5ml Crystal clear microcentriguge tube | StarLab | E1415-1500 | |
2ml Ultra high recovery microcentrifuge tube | StarLab | I1420-2600 | |
Oral dosing needles 20Gx38 mm curved (pk/3) | Vet-Tech | DE008A | |
Sterilin petri dish 50 mm | Scientific Laboratory Supplies | PET2020 | |
Absolute qPCR plate seals | Thermo Fisher Scientific | AB1170 | |
MicroAmpTM optical 384-well plate | Thermo Fisher Scientific (Applied Biosystems) | 4309849 | |
ViiA7TM 7 real-time PCR system with 384-well block | Thermo Fisher Scientific (Applied Biosystems) | 4453536 | |
Spectrophotometer (Nanodrop 1000) | Thermo Fisher Scientific | ND-1000 | |
Labnet Prism microcentrifuge | Labnet | C2500 | |
MultiGene Optimax Thermal cycler | Labnet | TC9610 |