電子常磁性共鳴 (EPR) 分光法は、フリーラジカルを測定する明確な方法です。選択的スピン プローブは、異なる細胞コンパートメント中のフリーラジカルの検出に使用します。治療、保存、および EPR 測定用サンプルを転送を容易にする生物学的サンプルを収集するために、実用的で効率的な手法を提案します。
別の細胞およびティッシュ コンパートメントにおける活性酸素種 (ROS) の正確かつ特定の検出は生物学的設定におけるシグナル伝達レドックス調節の研究に不可欠です。電子常磁性共鳴 (EPR) は、フリーラジカルを明確に把握する唯一の直接の方法です。その利点は、高い特異性と特定の種の生理学的レベルを検出したが、データの正確な解釈を確保するため、専門的な技術、注意サンプル準備と適切なコントロールが必要です。繰返しヒドロキシルアミン スピン プローブは、スーパーオキシドまたは EPR 分光法によって定量することができますニトロキシド信号を生成するその他のラジカルと選択的に反応します。細胞膜透過性のスピン プローブおよび急速にミトコンドリアに蓄積するように設計スピン プローブ別の細胞コンパートメントに活性酸素濃度の測定を可能にします。
培養細胞、細胞透過性 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine (CMH) と一緒に、細胞不浸透性のスーパーオキシド ジスムターゼ (SOD) 前処理なしの使用または細胞膜透過性 PEG SOD の使用には、細胞内活性酸素から細胞の分化。ミトコンドリア 1-hydroxy-4-[2-triphenylphosphonio)-acetamido]-2,2,6,6-tetramethyl-piperidine,1-hydroxy-2,2,6,6-tetramethyl-4-[2-(triphenylphosphonio)acetamido] ピペリジ ニウム塩化 (水戸-テンポ-H) の測定が可能になりますミトコンドリア ROS (主に活性酸素)。
スピン プローブと EPR 分光は、体内モデルにも適用できます。活性酸素は、肺などの組織と同様、血液や肺胞液などの細胞外液に検出できます。EPR 測定のための組織を処理して静脈内 1-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine (CPH) スピン プローブの生体を提供いくつかの方法が掲載されています。In vitroとin vivoモデルから得られた試料測定は室温で実行できますが、-80 ° C で保存および 77 K において EPR によって分析できるはまたサンプルは、特殊なチューブ安定-80 ° c で保存し、77 K、効率的、実用的を有効にして格納と転送のサンプルを容易に再現可能な方法で実行できます。
酸化ストレスと活性酸素の対策がすべての器官システムで多様な病気の研究に重要な活性酸素種 (ROS) の検出は、半減期が短いと高い反応性のために挑戦。電子常磁性共鳴 (EPR) 法は、フリーラジカルの検出の最も明白な方法です。スピン プローブより一般的に使用される蛍光プローブ上の利点を持っています。蛍光プローブは、比較的安価で使いやすく、活性酸素の急速な敏感な検出を提供するが、彼らは人工信号、ROS 濃度と特異性1 の一般的な不足を計算することができないことに起因する深刻な制限を持ってください。.
EPR の生物学的研究のための使用を容易にするさまざまな生物学的関連性の高いフリーラジカル種と同様、pO2pH、酸化還元の範囲を測定できるプローブを合成されているスピン状態2,3, 4,5,6,7。スピン トラップは、短寿命ラジカルをキャプチャするため開発されているし、フォーム長期的付加、EPR8によって検出を容易にします。両方のクラス (スピン プローブとスピン トラップ) の利点と制限があります。スピン プローブの 1 つの一般的に使用されるクラスは、EPR サイレントと安定したニトロキシドを形成する短寿命ラジカルと反応して環状の hydroxylamines です。繰返し hydroxylamines 反応スーパーオキシドと 100 回スピン トラップ、細胞酸化防止剤との競争にそれらを有効にするよりも高速が彼らは特異性がないし、適切なコントロールとラジカルまたはソースを識別する阻害剤を使用する必要ニトロキシド信号を担当します。スピン トラップ展示特異性、間と異なるスペクトル スーパーオキシド スピン トラッピングとラジカルの生分解しやすいパターンによって閉じ込められた種、彼らが遅い速度をある付加体します。スピン トラッピングのためのアプリケーションは、生物医学研究9,10、11,12,13で十分に文書化されています。
このプロジェクトの目的は実験を設計するための実用的な EPR 方法を示しますし、異なる細胞コンパートメント体外と異なる組織コンパートメント体内にプローブ スピンを使用して活性酸素を検出するサンプルを準備します。複数の原稿は、マウスモデルの解析の異なる細胞コンパートメントの体外およびプロセスの組織をターゲットに細胞膜透過性、細胞不浸透性、そしてミトコンドリア標的スピン プローブを使用して、これらの目標に関連するプロトコルを公開しています。14,15します正確なことを確認する別の細胞コンパートメントの in vitro 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine (CMH) スピン プローブを用いた活性酸素を測定するためのアプローチを検証することによって文献のこのボディに基づいて構築。測定、結果が偏る可能性があります潜在的な技術的な問題を強調表示します。我々 はまた CMH スピン プローブを用いた肺組織、気管支肺胞洗浄液、血で EPR 測定を実行するメソッドを提供します。これらの研究は、マウス組織を収穫する前に別のスピン プローブ、CPH を注入する手法し同様、組織を処理するさまざまな方法を比較します。最後に、ストレージの 77 K において EPR 測定前にサンプルの転送を許可するポリテトラフルオロ エチレン (PTFE) チューブのサンプルを格納するための実用的な方法を開発します。
生物学的設定でフリーラジカル産生の評価は理解の酸化還元規制で、健康と病気、シグナル伝達で重要ですがこれらの種の測定が高いフリーラジカル種の半減期が短いために挑戦と技術一般的に使用されるメソッドの制限。フリーラジカルの検出のためだけに明確な方法である、EPR は酸化還元の生物学で貴重な強力なツールです。このプロジェクトは、実験計画と異なる細胞コンパートメン…
The authors have nothing to disclose.
この作品は、コロラド大学大学院医学研究科長の戦略的研究基盤賞、R01 HL086680-09 ・ 1R35HL139726-01、E.N.G.、UCD CFReT 奨学 (彼) によって支えられました。著者に感謝博士サンドラ イートンと博士ギャレス イートン (デンバーの大学)、博士ジェラルド ローゼンと博士ジョセフ p. 花王 (メリーランド大学)、博士スジャータ ベンカタラマン (コロラド大学デンバー) 役に立つ議論のためジョアン Maltzahn、アシュリーTrumpie とアイビー ・ マクダーモット (コロラド大学デンバー) のテクニカル サポート。
DMEM | LifeTech | 10566-016 | cell culture media |
Diethylenetriaminepentaacetic acid (DTPA) | Sigma Aldrich | D6518-5G | |
sodium chloride (NaCl) | Fisher Scientific | BP358-212 | used to prepare 50 mM phosphate saline buffer according to Sigma aldrish |
potassium phosphate dibasic (HK2PO4 ) | Fisher Scientific | BP363-500 | used to prepare 50 mM phosphate saline buffer according to Sigma aldrish |
potassium phosphate monobasic (KH2PO4 ) | Sigma Aldrich | P-5379 | used to prepare 50 mM phosphate saline buffer according to Sigma aldrish |
Krebs-Henseleit buffer (KHB) | (Alfa Aesar, Hill) | J67820 | |
Bovine erythrocyte superoxide dismutase (SOD) | Sigma Aldrich | S7571-30KU | |
Phorbol 12-myristate 13-acetate (PMA) | Sigma Aldrich | P1585-1MG | Dissolve in DMSO |
Antimycin A (AA) | Sigma Aldrich | A8674-25MG | Dissolve in Ethanol and store in glass vials(MW used is the averaged molecular weights for four lots) |
1-Hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine . HCl (CMH) | Enzo Life Sciences | ALX-430-117-M050 | |
1-Hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine . HCl (CPH) | Enzo Life Sciences | ALX-430-078-M250 | |
1-Hydroxy-4-[2-triphenylphosphonio)-acetamido]-2,2,6,6-tetramethylpiperidine, 1-Hydroxy-2,2,6,6-tetramethyl-4-[2-(triphenylphosphonio)acetamido]piperidinium dichloride ( mito-TEMPO-H) | Enzo Life Sciences | ALX-430-171-M005 | |
1-Hydroxy-2,2,6,6-tetramethylpiperidin-4-yl-trimethylammonium chloride . HCl (CAT1H) | Enzo Life Sciences | ALX-430-131-M250 | |
Heparin | Sagent Pharmaceuticals | NDC 25021-400-10 | |
Diphenyliodonium chloride | Sigma Aldrich | 43088 | |
Deferoxamin mesylate salt | Sigma Aldrich | D9533-1G | |
Critoseal | Leica | 39215003 | |
BRAND disposable BLAUBRAND micropipettes, intraMark | Sigma Aldrich | 708733 | Capillaries |
PTFE FRACTIONAL FLUOROPOLYMER TUBING 3/16” OD x 1/8” ID |
NORELL | 1598774A | Teflon tubing |
SILICONE RUBBER STOPPERS FOR NMR SAMPLE TUBES FOR THIN WALL TUBES HAVING AN OD OF 4mm-5mm (3.2mm TO 4.2mm ID) TS-4-5-SR | NORELL | 94987 | |
EMXnano Bench-Top EPR spectrometer | Bruker BioSpin GmbH | E7004002 | |
EMX NANO TISSUE CELL | Bruker BioSpin GmbH | E7004542 |