Мы описываем протокол для лейбл свободной идентификации подтипы лимфоцитов с помощью количественных этап визуализации и алгоритм машинного обучения. Измерение 3D преломления томограмм лимфоцитов представляют 3D Морфологические и биохимические информации для отдельных ячеек, который затем анализируется с помощью алгоритмов машинного обучения для идентификации типов клеток.
Здесь мы описываем протокол для лейбл свободной идентификации подтипы лимфоцитов с помощью количественных фазы создания образов и машинного обучения. Определение подтипы лимфоцит имеет важное значение для исследования иммунологии, а также диагностики и лечения различных заболеваний. В настоящее время стандартные методы для классификации типов лимфоцитов полагаются на маркировке конкретных мембранных белков через реакции антиген антитело. Однако эти методы маркировки несут потенциальные риски изменения клеточных функций. Протокол, описанные здесь преодолевает эти проблемы, используя встроенный оптический контрастов, измеряется изображений 3D количественную фазу и алгоритм машинного обучения. Измерение 3D преломления (RI) томограмм лимфоцитов обеспечивает количественную информацию о 3D морфологии и фенотипы отдельных клеток. Биофизических параметров, извлеченных из измеренных 3D ри томограмм затем количественно проанализированы с алгоритм обучения машины, позволяя лейбл свободной идентификации типов лимфоцитов на уровне одной ячейки. Мы измерить 3D ри томограмм B, T CD4 + и CD8 + T-лимфоцитов и определили их типы клеток с более чем 80% точность. В этом протоколе мы описывают подробные шаги для лимфоцитов изоляции, 3D количественных этап визуализации и машинного обучения для выявления типов лимфоцитов.
Лимфоциты могут быть разделены на различные подтипы, включая B, помощник (CD4 +) T, цитотоксических T (CD8 +) и регулирования T клетки. Каждый тип лимфоцит имеет другую роль в адаптивной иммунной системы; например лимфоциты вырабатывают антитела, тогда как Т-лимфоцитов обнаружения специфических антигенов, устранить аномальные клетки и регулировать лимфоцитов. Функцию лимфоцитов и регулирование плотно управляется и относящиеся к различным заболеваниям, включая рак1, аутоиммунных заболеваний2и3вирусных инфекций. Таким образом идентификация типов лимфоцитов имеет важное значение для понимания их патофизиологические ролей в таких заболеваний и для иммунотерапии в клиниках.
В настоящее время методы для классификации типов лимфоцитов полагаются на реакции антиген антитело, нацеленных на конкретные поверхности мембранных белков или поверхностных маркеров4. Ориентация поверхности маркеров является точное и точный метод определения типов лимфоцитов. Однако это требует дорогостоящих реагентов и длительных процедур. Кроме того он несет риски модификация белков мембранных структур и изменения клеточных функций.
Для преодоления этих проблем, описанных здесь протокол вводит лейбл свободный идентификация типов лимфоцитов с помощью 3D количественных этап визуализации (QPI) и машинного обучения5. Этот метод позволяет классификация типов лимфоцитов на уровне одной ячейки на основе морфологических сведений, извлеченных из метки Бесплатные 3D визуализации отдельных лимфоцитов. В отличие от обычных флуоресцентной микроскопии методы QPI использует индекс преломления (RI) дистрибутивов (внутренние оптические свойства живых клеток и тканей) оптических контраст6,7. РИ томограмм отдельных лимфоцитов представляют фенотипические информацию, относящуюся к подтипам лимфоцитов. В этом случае системно использовать 3D ри томограмм отдельных лимфоцитов, использовался алгоритм обучения под наблюдением машины.
Используя различные методы QPI, 3D ри томограмм клеток активно использовались для изучения патофизиологии клеток потому, что они предоставляют метку бесплатно, количественные визуализации возможность8,9,10, 11,12,13. Кроме того 3D ри распределения отдельных ячеек может предоставить морфологических, биохимических и биомеханических информацию о клетки. 3D ри томограмм, ранее использовались в области гематологии14,,1516,17, инфекционные заболевания18,19, 20, иммунологии21, ячейки биологии22,23, воспаление24, рак25, нейронауки26,27, биологии развития28, токсикологии 29и микробиологии12,30,,3132.
Хотя 3D ри томограмм подробно Морфологические и биохимические клеток, классификация лимфоцитов подтипы трудно достичь, просто визуализации 3D ри томограмм5. Воспользоваться систематически и количественно измеряемых 3D ри томограмм для классификации типа клеток, мы использовали алгоритм обучения машины. Недавно несколько работ были зарегистрированы в котором количественных фазе изображения клеток были проанализированы с различных машинного обучения алгоритмов33, включая обнаружение микроорганизмов34, классификация бактериальных род35 , 36, быстрый и бесплатный этикетки обнаружения спор сибирской язвы37, автоматизированный анализ клеток спермы38, анализ рака клеток39,40и выявления активации макрофагов41.
Этот протокол обеспечивает подробные шаги для выполнения лейбл свободной идентификации типов лимфоцитов на уровне отдельных клеток с использованием 3D QPI и машинного обучения. Это включает в себя: 1) лимфоцитов изоляции от мыши крови, 2) лимфоцитов сортировки через поток цитометрии, 3) 3D QPI, 4) количественные функция извлечения из 3D ри томограмм и 5) под наблюдением обучения для выявления типов лимфоцитов.
Мы представляем протокол, который позволяет идентифицировать метку бесплатно лимфоцитов типов использования 3D количественных фазы создания образов и машинного обучения. Важнейшие шаги этого протокола являются количественную фазу изображений и возможность выбора. Для оптимального ?…
The authors have nothing to disclose.
Эта работа была поддержана KAIST BK21 + программа, Tomocube, Inc. и Национальный исследовательский фонд Кореи (2015R1A3A2066550, 2017M3C1A3013923, 2018K 000396). Ю. Джо выражает поддержку от KAIST президентских стипендий и Асан фонд биомедицинской науки стипендию.
Mouse | Daehan Biolink | C57BL/6J mice | gender and age-matched, 6 – 8 weeks |
Falcon conical centrifuge tube | ThermoFisher Scientific | 14-959-53A | 15 mL |
Phosphate-buffered saline | Sigma-Aldrich | 806544-500ML | |
Ammonium-chloride-potassium lysing buffer | ThermoFisher Scientific | A1049201 | |
RPMI-1640 medium | Sigma-Aldrich | R8758 | |
Fetal bovine serum | ThermoFisher Scientific | 10438018 | |
Antibody | BD Biosciences | 553140 (RRID:AB_394655) | CD16/32 (clone 2.4G2) |
Antibody | BD Biosciences | 555275 (RRID:AB_395699) | CD3ε (clone 17A2) |
Antibody | Biolegnd | 100734 (RRID:AB_2075238) | CD8α (clone 53-6.7) |
Antibody | BD Biosciences | 557655 (RRID:AB_396770) | CD19 (clone 1D3) |
Antibody | BD Biosciences | 557683 (RRID:AB_396793) | CD45R/B220 (clone RA3-6B2) |
Antibody | BD Biosciences | 552878 (RRID:AB_394507) | NK1.1 (clone PK136) |
Antibody | eBioscience | 11-0041-85 (RRID:AB_464893) | CD4 (clone GK1.5) |
DAPI | Roche | 10236276001 | 4,6-diamidino-2-phenylindole |
Flow cytometry | BD Biosciences | Aria II or III | |
Imaging chamber | Tomocube, Inc. | TomoDish | |
Holotomography | Tomocube, Inc. | HT-1H | |
Holotomography imaging software | Tomocube, Inc. | TomoStudio | |
Image professing software | MathWorks | Matlab R2017b |