우리의 림프 구 정량 위상 이미징 및 기계 학습 알고리즘을 사용 하 여 레이블 없는 식별 프로토콜을 설명 합니다. 림프 톨의 3 차원 굴절률 tomograms의 측정 3D 형태학 및 생화학 정보 개별 셀에 대 한 다음 종류의 식별을 위한 기계 학습 알고리즘으로 분석을 제시.
여기의 림프 구 정량 위상 이미징 및 기계 학습을 사용 하 여 레이블 없는 식별 프로토콜을 설명 합니다. 림프 톨의 식별 진단 면역학의 연구 및 다양 한 질병의 치료에 대 한 중요 하다. 현재, 항 원-항 체 반응을 통해 특정 막 단백질을 라벨에 의존 하는 림프 구 종류를 분류 하기 위한 표준 방법. 그러나, 이러한 라벨 기술을 세포 기능 변경의 잠재적인 위험. 여기에 설명 된 프로토콜 3D 양적 위상 이미징 및 기계 학습 알고리즘에 의해 측정 하는 내장 광학 대조를 이용 하 여 이러한 문제를 극복 한다. 림프 톨의 3 차원 굴절률 (RI) tomograms의 측정 3 차원 형태 및 개별 셀의 고기에 대 한 정량적 인 정보를 제공합니다. 측정 된 3D 리 tomograms에서 추출 생물 매개 변수는 양적 단일 세포 수준에서 림프 구 종류의 식별 라벨 무료 사용 기계 학습 알고리즘으로 분석 됩니다. 우리는 B, T CD4 + 및 CD8 + T 림프 톨의 3D RI tomograms를 측정 하 고 80% 이상으로 그들의 세포 유형 식별 정확도. 이 프로토콜에서 우리는 림프 구 분리, 3D 양적 위상 이미징 및 림프 구 종류를 식별 하기 위한 기계 학습에 대 한 자세한 단계를 설명 합니다.
림프 톨 B, 도우미 (CD4 +) T, 세포 독성 (CD8 +) T, 및 T는 규제를 포함 한 다양 한 하위 유형으로 분류 될 수 있다 세포. 각 림프 구 종류는 다른 역할 적응 면역 체계; 예를 들어 B 림프 톨 생성 항 체, T 림프 톨 특정 항을 검색 하 고 비정상 세포를 제거 하 고, B 림프 톨을 규제 하는 반면. 림프 구 기능 및 규정은 밀접 하 게 의해 제어 되며 암1,2, 자가 면역 질환 및 바이러스 감염3를 포함 하 여 다양 한 질병에 관련 된. 따라서, 림프 구 종류의 식별은 같은 질병에 immunotherapy 클리닉에 대 한 그들의 병 태 생리 역할을 이해 하는 것이 중요.
현재, 림프 구 종류를 분류 하기 위한 방법 특정 표면 막 단백질 또는 표면 마커4를 대상으로 항 원-항 체 반응에 의존 합니다. 표면 마커를 대상으로 림프 구 종류를 결정 하는 정확 하 고 정확한 방법입니다. 그러나, 그것은 비싼 시 약 및 시간이 걸리는 절차를 요구 한다. 또한, 그것은 막 단백질 구조의 수정 및 세포 기능 변경의 위험을 운반합니다.
이러한 문제를 해결 하려면 여기에 설명 된 프로토콜 레이블 없는 신분의 림프 구 종류 (QPI) 이미징 3D 양적 단계5를 학습 하는 기계를 사용 하 여 소개 합니다. 이 메서드는 개별 세포의 레이블 없는 3D 영상에서 추출한 형태학 정보에 따라 단일 셀 수준에서 림프 구 종류의 분류를 수 있습니다. 기존의 형광 현미경 검사 법 기술, 달리 QPI 광학 대조6,7굴절률 (RI) 배포판 (라이브 세포 및 조직의 기본 광학 속성)를 사용합니다. 개별 세포의 RI tomograms 세포의 특정 하위 phenotypic 정보를 나타냅니다. 이 경우에, 개별 세포의 3D RI tomograms를 체계적으로 활용 하는 감독된 기계 학습 알고리즘은 이용 되었다.
다양 한 QPI 기술을 사용 하 여, 셀의 3D RI tomograms 적극적으로 사용 되었습니다 셀 이상의 연구에 대 한 레이블-무료, 제공 하기 때문에 양적 이미징 기능8,,910, 11,,1213. 또한, 개별 셀의 3D 리 배포판 형태학, 생화학, 및 biomechanical 셀에 대 한 정보를 제공할 수 있습니다. 3D RI tomograms 이전 혈액학14,15,,1617, 전염병18,19, 의 분야에 이용 되었습니다 20,21면역학, 세포 생물학22,23, 염증24, 암25, 신경 과학26,27, 개발 생물학28, 독극물 29, 그리고 미생물학12,30,,3132.
3D RI tomograms 셀의 자세한 형태학 및 생화학 정보 제공, 림프 구 하위 분류 단순히 3D RI tomograms5을 이미징 하 여 달성 하기 어렵습니다. 체계적으로 그리고 양이 많게 측정된 3D RI tomograms 셀 유형 분류에 대 한 악용, 우리는 기계 학습 알고리즘을 활용. 최근, 여러 작품 보고 되었습니다 어떤 양적 단계에서 셀의 이미지 분석 되었다 다양 한 기계 학습 알고리즘33, 미생물34, 세균성 속35 의 분류의 탐지를 포함 하 여 , 36, 탄 저 균 포자37, 신속 하 고 레이블 없는 감지 자동 정자 세포38의 분석, 암 세포39,40, 분석 및 대 식 세포 활성화41의 검출.
이 프로토콜 3D QPI 및 기계 학습을 사용 하 여 개별 셀 수준에서 림프 구 종류의 레이블 없는 식별을 수행 하는 자세한 단계를 제공 합니다. 이것은 포함 한다: 1) 림프 구 분리 마우스 혈액, 림프 구 2) 3D 리 tomograms에서 흐름 cytometry, 3) 3D QPI, 4) 양적 특징 추출 통해 정렬 및 림프 구 종류를 식별 하는 데 5) 감독된 학습에서.
선물이 3D 양적 위상 이미징 및 기계 학습을 이용 하는 림프 구 종류의 레이블 없는 식별을 가능 하 게 하는 프로토콜. 이 프로토콜의 중요 한 단계는 양적 위상 이미징 및 기능을 선택 합니다. 최적의 홀로그램 영상에 대 한 위에 설명 된 대로 셀의 밀도 제어 한다. 셀의 기계적 안정성도 부동 또는 진동 세포 움직임 조명 각도 변화에 따라 홀로그램 측정을 방해 하기 때문에 정확한 3D RI 분포를 얻기…
The authors have nothing to disclose.
이 작품은 KAIST BK21 + 프로그램, Tomocube, Inc., 및 연구 재단의 국립 (2015R1A3A2066550, 2017M3C1A3013923, 2018 K 000396)에 의해 지원 되었다. Y. 조 KAIST 대통령 친목 및 아산 재단 생물 의학 과학 장학금 지원을 인정합니다.
Mouse | Daehan Biolink | C57BL/6J mice | gender and age-matched, 6 – 8 weeks |
Falcon conical centrifuge tube | ThermoFisher Scientific | 14-959-53A | 15 mL |
Phosphate-buffered saline | Sigma-Aldrich | 806544-500ML | |
Ammonium-chloride-potassium lysing buffer | ThermoFisher Scientific | A1049201 | |
RPMI-1640 medium | Sigma-Aldrich | R8758 | |
Fetal bovine serum | ThermoFisher Scientific | 10438018 | |
Antibody | BD Biosciences | 553140 (RRID:AB_394655) | CD16/32 (clone 2.4G2) |
Antibody | BD Biosciences | 555275 (RRID:AB_395699) | CD3ε (clone 17A2) |
Antibody | Biolegnd | 100734 (RRID:AB_2075238) | CD8α (clone 53-6.7) |
Antibody | BD Biosciences | 557655 (RRID:AB_396770) | CD19 (clone 1D3) |
Antibody | BD Biosciences | 557683 (RRID:AB_396793) | CD45R/B220 (clone RA3-6B2) |
Antibody | BD Biosciences | 552878 (RRID:AB_394507) | NK1.1 (clone PK136) |
Antibody | eBioscience | 11-0041-85 (RRID:AB_464893) | CD4 (clone GK1.5) |
DAPI | Roche | 10236276001 | 4,6-diamidino-2-phenylindole |
Flow cytometry | BD Biosciences | Aria II or III | |
Imaging chamber | Tomocube, Inc. | TomoDish | |
Holotomography | Tomocube, Inc. | HT-1H | |
Holotomography imaging software | Tomocube, Inc. | TomoStudio | |
Image professing software | MathWorks | Matlab R2017b |