Aquí, presentamos los protocolos para identificar inmunomoduladores 1) virus-codificado que promueven la replicación de arbovirus y host 2) eucariotas factores que limitan la replicación de arbovirus. Estos métodos basados en fluorescencia y luminiscencia permiten a los investigadores obtener rápidamente lecturas cuantitativas de la replicación de arbovirus en análisis simplistas con proporciones bajas de señal a ruido.
Interferencia de RNA – y genoma de edición basados en plataformas de detección han sido ampliamente utilizados para identificar los factores de la célula huésped que limitan la replicación del virus. Sin embargo, estas pantallas se realizan normalmente en las células que son naturalmente permisivas al patógeno viral bajo estudio. Por lo tanto, la sólida réplica de virus en condiciones de control puede limitar el rango dinámico de estas pantallas. Además, estas pantallas no puede identificar fácilmente las vías de defensa celular que limitan la replicación del virus si el virus es capaz de contrarrestar las defensas antivirales y bien adaptado al host. En este artículo, describimos un nuevo paradigma para explorar interacciones virus-huésped mediante el uso de pantallas que a abortado naturalmente infecciones por arbovirus como el virus de la estomatitis vesicular (VSV). A pesar de la capacidad de VSV para replicar en una amplia gama de insecto díptero y anfitriones mamíferos, VSV experimenta una infección abortiva post entrada en una variedad de líneas celulares derivadas de insectos lepidópteros, como la polilla gitana (Monacha anaerobias). Sin embargo, estas infecciones abortivas de VSV pueden ser “rescatadas” cuando las defensas antivirales de la célula anfitrión están en peligro. Describimos cómo VSV cepas codificación genes del reportero conveniente y restrictivas dispar L. líneas celulares pueden ser asociadas a las pantallas de configuración para identificar factores de host involucrados en la restricción de arbovirus. Además, también mostramos la utilidad de estas herramientas de investigación en la identificación de factores codificados viralmente que rescatar replicación VSV durante la coinfección o a través de la expresión ectópica, las codificadas por los virus de mamíferos incluidas. La restricción natural de replicación de VSV en dispar L. células proporciona una alta relación señal a ruido cuando la detección de las condiciones que promueven el rescate VSV, permitiendo el uso de simplista luminiscencia y fluorescencia-ensayos para controlar los cambios en la replicación del VSV. Estas metodologías son valiosas para la comprensión de la interrelación entre respuestas antivirales del huésped y factores de evasión inmune viral.
La capacidad de un virus para replicar productivamente en un anfitrión particular se rige en parte por la disponibilidad de factores de la célula huésped que admiten entrada viral y replicación1. La gama de virus también puede ser dictada por la capacidad de un virus a contador celular antiviral las defensas que de lo contrario impediría la replicación viral2,3. Es el resultado de estas interacciones virus-huésped complejos que en última instancia decide si un virus será capaz de completar su ciclo de vida en un anfitrión particular. Dadas las consecuencias potencialmente patógenas para el host si sobreviene la replicación viral, es fundamental para el desarrollo de estrategias experimentales para mejorar nuestra comprensión de las interacciones virus-huésped claves que pueden inclinar la balanza entre abortivos y productivo infecciones. Dilucidar las características moleculares de la interacción virus-huésped será instrumental en el desarrollo de estrategias terapéuticas antivirales nuevos y alternativos.
Con el advenimiento del RNA de interferencia (ARNi)4,5 y herramientas de edición de genoma (e.g., CRISPR Cas9, Zinc finger nucleasas, TALENs)6,7, se ha convertido en experimentalmente factible modificar el expresión de factores celulares de todo el genoma de escalas y explorar el impacto de estas alteraciones en la replicación del virus. De hecho, se han realizado numerosos ARNi y genoma de edición basado en pantallas en tipos de la célula huésped invertebrados y vertebrados que han dado a conocer nuevas facetas de interacción virus-huésped8,9,10, 11 , 12. estas pantallas suelen emplean virus codificación reporteros, como luciferasa de luciérnaga (LUC) o proteínas fluorescentes (e.g., GFP, DsRed), que proporcionan medios convenientes de evaluar cuantitativamente la expresión viral del gene como una lectura para la replicación viral9,12. Esta estrategia permite a los investigadores a identificar los factores de huésped que sea promoverán o antagonizan la replicación viral como lo demuestran los aumentos o disminuciones, respectivamente, en reportero viral señales9,12. Sin embargo, en la mayoría de los casos, estas pantallas se han realizado utilizando virus que están bien adaptadas para el tipo de célula de host en el que se están estudiando. Mientras que esta estrategia puede ser importante para la comprensión de las relaciones coevolutivas entre los patógenos virales y sus anfitriones naturales, existen preocupaciones fundamentales en cuanto a su uso en descubrir factores antivirales de host. En estos casos, una mejora en reporter virus señal sobre RNAi caída está siendo buscada, o la inactivación de un factor celular que normalmente impide la replicación viral. En primer lugar, si un virus ya es capaz de replicar enérgicamente en la célula huésped siendo examinada bajo condiciones de control, el rango dinámico de la pantalla (es decir, la capacidad de distinguir entre fondo y señales mejoradas reportero viral) puede ser limitado. En segundo lugar, este problema se agrava aún más por las situaciones en que el virus está bien adaptada a la célula huésped y eficaz en la lucha contra vías de defensa del anfitrión que se apunta en la pantalla.
Debido a las preocupaciones anteriores sobre interacción virus-huésped tradicionales métodos de cribado, se desarrolló un nuevo paradigma para el estudio de las interacciones virus-host que explotan infecciones del arbovirus naturalmente abortiva en células de los insectos lepidópteros. Esta estrategia deriva de una observación que los arbovirus humanos estudiados, VSV, sufre una infección abortiva en las células derivadas de la polilla gitana (L. anaerobias)13. VSV es transmitido naturalmente por insectos díptero (es decir, moscas de la arena) a los anfitriones mamíferos y se ha demostrado experimentalmente para infectar a una amplia gama de invertebrados y vertebrados hospedadores en celular cultivo e in vivo14. El genoma de ARN monocatenario de 11 kb sentido negativo de VSV codifica cinco mRNAs subgenómico que cada uno se traducen a las proteínas que forman el virión envuelto. Sin embargo, sistemas genéticos inversos VSV han permitido la creación de cepas réplica-competente codificación de LUC o proteínas fluorescentes, además de los cinco naturales VSV gene productos15,16,17. Porque estas proteínas del reportero no se incorporan en el virión VSV, proporcionan una lectura conveniente para la expresión de gene VSV que ocurre post entrada. Utilizando cepas VSV codifican GFP o LUC, previamente hemos demostrado que genes VSV es seriamente restricto a la entrada de las células LD652 y que títulos VSV no aumentan por la infección después de 72 horas (hpi). En contraste, la coinfección de células LD652 con VSV y los mamíferos poxvirus, virus vaccinia (VACV), conduce a aumento logarítmico en la expresión génica VSV y los títulos por este momento. VACV experimenta la expresión temprana de genes, replicación del ADN y tardía expresión génica en las infecciones LD652 de la célula, pero el ciclo de replicación VACV es en última instancia infructuoso debido a virión incompleta morfogénesis18. El genoma de ADN ~ 192 kb grande de VACV codifica proteínas > 200, muchos de los cuales mostrar propiedades inmunomoduladoras que promueven la replicación viral a través de la supresión del anfitrión inmunorespuestas19. Por lo tanto, la hipótesis de que el “rescate” de la replicación de VSV en células LD652 por coinfección VACV fue probablemente mediado por VACV inmunomoduladores que inhibían dispar L. respuestas normalmente restringir la replicación del VSV. En apoyo de esto, el tratamiento de las células LD652 con el inhibidor de host RNA polimerasa II actinomicina D también rescata replicación VSV en células LD652, que indica que las respuestas de acogida dependiente de la transcripción cuadra VSV replicación post entrada13.
Las observaciones anteriores sugieren que la naturaleza naturalmente restrictiva de las células LD652 a la infección de VSV puede proporcionar un fondo relativamente bajo cuando la detección de las condiciones que mejoran las señales reportero VSV-codificado (es decir, los que inhiben la host defensas antivirales). Aquí, ofrecemos los métodos para el uso de fluorescencia o ensayos de LUC a pantalla para condiciones que aliviar la restricción de VSV en células de lepidópteros. En primer lugar, mostramos cómo estos ensayos pueden utilizarse para identificar los factores inmunomoduladores virally codificado que restricción de VSV durante cualquiera de los dos experimentos de coinfección o a través de la expresión ectópica de factores virales candidato. Por ejemplo, ilustramos cómo utilizamos estas técnicas de proyección para identificar poxvirus codifican proteínas de A51R como una nueva familia de factores inmunomoduladores que rescatar replicación de VSV en ausencia de otros factores de poxvirus13. En segundo lugar, ilustramos cómo ARNi en restrictivas VSV-LD652 infecciones de células se puede utilizar para identificar directamente factores eucarióticos host arbovirus restricción13.
Aquí hemos descrito simple fluorescencia y luminiscencia-ensayos para detectar condiciones que rescatar replicación de VSV en cultivos celulares de lepidópteros restrictivas. La infección abortiva de VSV en lepidópteros células crea una excelente relación señal-ruído cuando ensayando para la expresión de gene VSV. Por ejemplo, las señales de LU en lisados de infecciones VSV-LUC solo eran ~ 1,000-fold superior en mock-infectados lisados, pero estas señales solamente cambiaron aproximadamente doble en un transc…
The authors have nothing to disclose.
D.G. fue apoyado por fondos de programa de la Universidad de Texas Southwestern Medical Center dotado. Los autores agradecen la disposición de VSV-DsRed y VSV-LUC Michael Whitt (la Universidad de Tennessee Health Science Center) y Sean Whelan (Harvard Medical School). Los autores también agradecen Gary Luker (escuela de medicina de la Universidad de Michigan) el amable don de la cepa VACV-FL-GFP.
6-well tissue culture plates | CELLTREAT | 229106 | |
24-well tissue culture plates | CELLTREAT | 229124 | |
10 cm tissue culture dishes | Corning | C430167 | |
Grace’s Insect Medium | Sigma | G8142 | |
EX-CELL 420 | Sigma | 14420C | |
Fetal Bovine Serum – Optima | Atlanta Biologicals | S12450 | |
Growth medium | 1:1 mixture of Grace's Insect Medium and EX-Cell 420 Serum-Free Medium also containing 1 % antibiotic-antimycotic solution and 10 % Fetal bovine serum | ||
Antibiotic-Antimycotic Solution (100×) | Sigma | A5955 | |
Dulbecco’s Phosphate Buffered Saline (DPBS) | Sigma | D8662 | |
Serum Free Media (SFM) | Thermo Fisher | 10902096 | |
Cytosine arabinoside | Sigma | C1768 | |
Transfection reagent | Thermo Fisher | 10362100 | |
Corning cellgro DMSO (Dimethyl Sulfoxide) | Corning | 25950CQC | |
Reporter lysis buffer 5X | Promega | E3971 | |
Luciferase Assay Reagent | Promega | E1483 | |
96-Well Microplates | Corning | 3915 | |
Mouse anti-FLAG antibody | Wako | 014-22383 | |
Rabbit anti-firefly luciferase antibody | Abcam | ab21176 | |
Mouse anti-actin antibody | Sigma | A2066 | |
Mouse anti-VSV M | N/A | N/A | Dr. John Connor (Boston University) |
Mouse anti-VACV I3L | N/A | N/A | Dr. David Evans (University of Alberta) |
8-well Chambered dish | Lab-Tek II | 155409 | |
Cell viability dye | Thermo Fisher | C12881 | |
FLUOstar microplate reader | BMG Labtech | FLUOstar | |
Confocal microscope | Olympus | FV10i-LIV | |
Image analysis software | Olympus | v1.18 | cellSens software |
Eppendorf 5702 ventilated centrifuge | Eppendorf | 22628102 | |
Odyssey Fc Infrared Imaging System | Li-COR Biosciences | Odyssey Fc | |
LD652 cells | N/A | N/A | Dr. Basil Arif (Natural Resources Canada) |
BSC-40 cells | ATCC | CRL-2761 | |
BHK cells | ATCC | CCL-10 | |
HeLa cells | ATCC | CCL-2 | |
BSC-1 cells | ATCC | CCL-26 | |
in vitro transcription and purification kit | Thermo Fisher | AM1626 | |
PCR purification kit | Qiagen | 28104 |