Summary

西瓜与瓶装葫芦之间的同源和异种移植在冷反应微 rna 研究中的应用

Published: November 20, 2018
doi:

Summary

本文提出了一个详细的方案, 有效地制作西瓜和葫芦之间的同质和异种移植, 除了组织取样、数据生成和数据分析的方法, 用于研究冷反应微 rna。

Abstract

微 rna (mirna) 是大约20-24 特的内生小非编码 rna, 已知在植物发育和适应中发挥着重要作用。有越来越多的证据表明, 某些 mirna 的表达在嫁接时发生了变化, 这是农民通常用来提高作物对生物和非生物胁迫能力的农业做法。与包括西瓜在内的许多其他主要黄瓜相比, 瓶葫芦是一种具有固有气候抵御能力的作物, 使其成为西瓜中使用最广泛的根茎之一。最近高通量测序技术的发展为研究冷反应 mirna 及其对异种移植优势的贡献提供了巨大的机会;然而, 适当的实验程序是实现这一目标的先决条件。在这里, 我们提出了一个详细的协议, 有效地生成同异种之间的冷易感西瓜和耐寒瓶葫芦, 除了组织取样, 数据生成和数据分析的方法。所提出的方法也适用于其他植物移植系统, 用于检测各种环境压力下的 mirna 法规, 如热、干旱和盐度。

Introduction

长期以来, 嫁接一直被用作提高作物产量和耐受生物和非生物胁迫 1,2,3的农业技术。在异质嫁接系统中, 精英根系可以提高植物的水分和养分吸收, 增强对土壤病原体的抵抗力, 并限制金属毒性 4,5的负面影响, 这可能会增加嫁接增长活力和提高对环境压力的耐受性。在许多情况下, 异种嫁接也会影响园艺植物中的果实品质, 从而改善水果风味, 增加与健康相关的化合物6,7的含量。研究发现, 植物激素、rna、肽和蛋白质在根茎和接穗之间的远距离转移是调节接穗植物生长发育的一个基本机制 8,9 ,10。接枝在与环境适应有关的远距离信号和运输研究中得到了广泛的应用。接枝实验对于在接收组织或血管液中明确检测传输分子以及由于信号传输激活或抑制分子目标的作用特别大。

据报道, 非编码 rna 是一种在细胞中发挥重要调控功能的大一类 rna, 它在促进植物适应非生物胁迫方面发挥了作用.mirna 是大约 20-24 nt 的内生小非编码 rna. 研究揭示了 mirna 在植物活动各个方面的调控作用, 如幼苗生长、侧根形成141516、营养吸收, 硫酸盐代谢和稳态 17,以及对生物和非生物胁迫的反应18。近年来, mirna 及其靶向基因的表达与异种嫁接黄瓜幼苗的耐盐胁迫性有关.在葡萄的种间移植中, mirna 表达对干旱胁迫的反应被发现是遗传依赖性的 20

高通量测序技术的快速发展和成本的降低, 为研究农艺植物中的 mirna 规律提供了良好的契机。西瓜 (瓜兰特 [thunb.]曼斯夫) 是全世界种植的一种重要的葫芦作物, 容易受到低温的影响。瓶装葫芦是一种更具气候弹性的黄瓜, 农民通常用西瓜移植。本研究的主要目的是建立一种标准、高效、简便的西瓜之间异种移植方法.曼斯夫)和瓶装葫芦 (紫菜 [molina] standl).该协议还提供了一个详细的实验方案和分析程序, 用于研究接枝后 mirna 表达的调节, 这对于揭示异质接枝优势背后的机制是有用的。

本研究使用的植物材料包括西瓜品种和葫芦林。西瓜品种是一种产量高、但容易受到低温影响的商业品种。瓶装葫芦是一种很受欢迎的西瓜、黄瓜和葫芦嫁接的根茎, 因为它具有良好的耐低温能力.

Protocol

1. 种子灭菌和萌发 对于表面灭菌, 将瓶装葫芦种子浸泡在500毫升的烧杯中, 在58°c 下充满水, 偶尔搅拌, 直到水温下降到40°c。 同时, 将3公斤泥炭土放入尼龙袋中, 对其进行灭菌, 以 120°cse0.5 mpa 高压灭菌20分钟。 在不搅拌的情况下, 将葫芦种子再浸泡4-5小时。 一旦水达到室温, 用蒸馏水冲洗种子 2x-3倍。 将多余的水排干, 让种子在 2 8°c 的纱布袋中发芽, 在黑暗中?…

Representative Results

图 2: 在室温和冷应力条件下各种移植物的表型.(a) 该面板显示在室温下的同型和异种嫁接幼苗作为对照。(b) 该面板显示经过48小时的冷处理后的同型和异种嫁接幼苗。请点击这里查看此图的较大版本.</p…

Discussion

在该方案中, 我们详细介绍了一种高效、可重复的方法, 使西瓜与葫芦之间的同质和异种移植物。这种方法不需要特定的设备, 操作起来非常容易, 通常嫁接的存活率非常高。该方法还可用于制作其他黄瓜的嫁接物, 如西瓜、黄瓜和南瓜之间的嫁接物。

值得注意的是, 根茎和接穗的相对大小 (年龄) 对于成功嫁接至关重要 ( 《议定书》第2.2 步)。我们观察到, 如果所使?…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

这项工作得到了国家自然科学基金 (31772191)、浙江省公益研究项目 (2017c32027)、浙江省植物育种重点科学项目 (2017C32027) 和国家项目计划的支持。支持一流的青年专业人员 (到 p. x.)。

Materials

TRIzol Reagent Invitrogen 15596026
RNA-free DNase I Takara D2270A
Truseq Small RNA sample prep Kit Illumina RS-200-0012
2100 Bionalyser Agilent 5067
DNA Polymerase Thermo Fisher Scientific F530S
UEA sRNA workbench 2.4-plant version (software) NA NA http://srna-workbench.cmp.uea.ac.uk/
Rfam 11.0 database (website) NA NA http://rfam.janelia.org
miRBase 22.0 (website) NA NA http://www.mirbase.org/
MIREAP(software) NA NA https://sourceforge.net/projects/mireap/
TargetFinder (software) NA NA http://targetfinder.org/

Referencias

  1. Schwarz, D., Rouphael, Y., Colla, G., Venema, J. H. Grafting as a tool to improve tolerance of vegetables to abiotic stresses: Thermal stress, water stress and organic pollutants. Scientia Horticulturae. 127, 162-171 (2010).
  2. Li, Y., et al. Mechanisms of tolerance differences in cucumber seedlings grafted on rootstocks with different tolerance to low temperature and weak light stresses. Turkish Journal of Botany. 39 (4), 606-614 (2015).
  3. Li, C. H., Li, Y. S., Bai, L. Q., He, C. X., Yu, X. C. Dynamic Expression of miRNAs and Their Targets in the Response to Drought Stress of Grafted Cucumber Seedlings. Horticultural Plant Journal. 2 (1), 41-49 (2016).
  4. Rouphael, Y., Cardarelli, M., Colla, G., Rea, E. Yield, mineral composition, water relations, and water use efficiency of grafted mini-watermelon plants under deficit irrigation. HortScience. 43 (3), 730-736 (2008).
  5. Savvas, D., et al. Interactive effects of grafting and manganese supply on growth, yield, and nutrient uptake by tomato. HortScience. 44 (7), 1978-1982 (2009).
  6. Aloni, B., Cohen, R., Karni, L., Aktas, H., Edelstein, M. Hormonal signaling in rootstock-scion interactions. Scientia Horticulturae. 127, 119-126 (2010).
  7. Rouphael, Y., Caradrelli, M., Rea, E., Colla, G. Improving melon and cucumber photosynthetic activity, mineral composition, and growth performance under salinity stress by grafting onto Cucurbita hybrid rootstocks. Photosynthetica. 50 (2), 180-188 (2012).
  8. Louws, F. J., Rivard, C. L., Kubota, C. Grafting fruiting vegetables to manage soilborne pathogens, foliar pathogens, arthropods and weeds. Scientia Horticulturae. 127 (2), 127-146 (2010).
  9. Asins, M. J., et al. Genetic analysis of rootstock-mediated nitrogen (N) uptake and root-to-shoot signalling at contrasting N availabilities in tomato. Plant Science. 263, 94-106 (2017).
  10. Yin, L. K., et al. Role of protective enzymes in tomato rootstocks to resist root knot nematodes. Acta Horticulturae. 1086 (1086), 213-218 (2015).
  11. Gaion, L. A., Carvalho, R. F. Long-Distance Signaling: what grafting has revealed?. Journal of Plant Growth Regulation. 37 (2), 694-704 (2018).
  12. Turnbull, C. G., Hennig, L., Köhler, C. Grafting as a research tool. Plant Developmental Biology. , 11-26 (2010).
  13. Li, C., et al. Grafting-responsive miRNAs in cucumber and pumpkin seedlings identified by high-throughput sequencing at whole genome level. Physiologia Plantarum. 151 (4), 406-422 (2014).
  14. Lakhotia, N., et al. Identification and characterization of miRNAome in root, stem, leaf and tuber developmental stages of potato (Solanum tuberosum L.) by high-throughput sequencing. BMC Plant Biology. 14 (1), 6 (2014).
  15. Jones-Rhoades, M. W., Bartel, D. P., Bartel, B. MicroRNAs and their regulatory roles in plants. Annual Review of Plant Biology. 57, 19-53 (2006).
  16. Puzey, J. R., Kramer, E. M. Identification of conserved Aquilegia coerulea microRNAs and their targets. Genetic. 448 (1), 46-56 (2009).
  17. Matthewman, C. A., et al. miR395 is a general component of the sulfate assimilation regulatory network in Arabidopsis. FEBS Letters. 586 (19), 3242-3248 (2012).
  18. Ali, E. M., et al. Transmission of RNA silencing signal through grafting confers virus resistance from transgenically silenced tobacco rootstocks to non-transgenic tomato and tobacco scions. Journal of Plant Biochemistry and Biotechnology. 25 (3), 245-252 (2016).
  19. Li, Y. S., Li, C. H., Bai, L. Q., He, C. X., Yu, X. C. MicroRNA and target gene responses to salt stress in grafted cucumber seedlings. Acta Physiologiae Plantarum. 38 (2), 1-12 (2016).
  20. Pagliarani, C., et al. The accumulation of miRNAs differentially modulated by drought stress is affected by grafting in grapevine. Plant Physiology. 173 (4), 2180-2195 (2017).
  21. Liu, N., Yang, J. H., Guo, S. G., Xu, Y., Zhang, M. F. Genome-wide identification and comparative analysis of conserved and novel microRNAs in grafted watermelon by high-throughput sequencing. PLoS One. 8 (2), e57359 (2013).
  22. Song, G. Development of 2JC-350 automatic grafting machine with cut grafting method for vegetable seedling. Transactions of the Chinese Society of Agricultural Engineering. 22 (12), 103-106 (2006).
  23. Kumar, D., et al. Uncovering leaf rust responsive miRNAs in wheat (triticum aestivum l.) using high-throughput sequencing and prediction of their targets through degradome analysis. Planta. 245 (1), 1-22 (2016).
  24. Kohli, D., et al. Identification and characterization of wilt and salt stress-responsive microRNAs in chickpea through high-throughput sequencing. PLoS One. 9 (10), e108851 (2014).
  25. Salzberg, S. L. Computational challenges in next-generation genomics. International Conference on Scientific and Statistical Database Management. ACM. 2, (2013).
  26. Guo, S. G., et al. The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nature Genetics. 45, 51-58 (2013).
  27. Wang, Y., et al. Gourdbase: a genome-centered multi-omics database for the bottle gourd (lagenaria siceraria), an economically important cucurbit crop. Scientific Reports. 8 (1), 306 (2018).
  28. Wang, X. F., Liu, X. S. Systematic Curation of miRBase Annotation Using Integrated Small RNA High-Throughput Sequencing Data for C. elegans and Drosophila. Frontiers in Genetics. 2, 25 (2011).
  29. Bo, X. C., Wang, S. Q. TargetFinder: a software for antisense oligonucleotide target site selection based on MAST and secondary structures of target mRNA. Bioinformatics. 21 (8), 1401-1402 (2005).
  30. . GOATOOLS: Tools for Gene Ontology Available from: https://doi.org/10.5281/zenodo.31628 (2015)
  31. Wang, L. P., Li, G. J., Wu, X. H., Xu, P. Comparative proteomic analyses provide novel insights into the effects of grafting wound and hetero-grafting per se on bottle gourd. Scientia Horticulturae. 200 (8), 1-6 (2016).
check_url/es/58242?article_type=t

Play Video

Citar este artículo
Wang, L., Wu, X., Li, G., Wu, X., Qin, D., Tao, Y., Xu, P. Generating Homo- and Heterografts Between Watermelon and Bottle Gourd for the Study of Cold-responsive MicroRNAs. J. Vis. Exp. (141), e58242, doi:10.3791/58242 (2018).

View Video