Эффективный метод для быстрого и ионоселективного опреснения радиоактивного йода в несколько водных растворах описан с использованием золотых наночастиц прикол ацетилцеллюлозы мембранные фильтры.
Здесь мы демонстрируем детали протокола для подготовки наноматериалы встроенный композитных мембран и его применение к эффективной и ионоселективного удаления радиоактивный йод. С помощью цитрат стабилизированный наночастиц золота (средний диаметр: 13 Нм) и ацетат целлюлозы мембраны, золото легко были сфабрикованы наночастиц встроенный ацетат целлюлозы мембраны (Au-CAM). Нано адсорбенты на Au-CAM были весьма стабильными в присутствии высокой концентрации неорганических солей и органических молекул. Йодид-ионов в водных растворах быстро может быть захвачен этой инженерии мембраны. Через процесс фильтрации с помощью Au-CAM, содержащий фильтр единицы, отличные удаления эффективность (> 99%) также как ионоселективного опреснения результат был достигнут в течение короткого времени. Кроме того АС-CAM предоставил хорошую возможность повторного использования без значительного снижения своих выступлений. Эти результаты предложили нынешней технологии с использованием инженерии гибридные мембранные будет многообещающий процесс для крупномасштабных обеззараживания радиоактивного йода от жидких отходов.
На протяжении нескольких десятилетий огромное количество жидких радиоактивных отходов был порожденных медицинских институтов, научно-исследовательских учреждений и ядерных реакторах. Эти загрязнители часто была ощутимой угрозы для окружающей среды и здоровья человека1,2,3. Особенно радиоактивный йод признается в качестве одного из наиболее опасных элементов АЭС аварий. Например, экологической доклад о Фукусима и Чернобыль, ядерный реактор показал, что количество выпустила радиоактивный йод, включая 131I (t1/2 = 8,02 дней) и 129я (t1/2 = 15,7 млн лет) в окружающую среду было больше, чем из других радионуклидов4,5. В частности воздействие этих радиоизотопов привели к высокой поглощения и обогащения в щитовидной железы человека6. Кроме того выпущенный радиоактивный йод может вызвать серьезное загрязнение почвы, морской воды и грунтовых вод вследствие их высокой растворимостью в воде. Таким образом были расследованы много восстановительных процессов с использованием различных неорганических и органических адсорбенты для захвата радиоактивный йод в сточные воды,78,9,10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20. Несмотря на обширные усилия для разработки передовых адсорбента систем, создание метода обеззараживания показаны удовлетворительные выступления под постоянное состояние в поток был весьма ограниченным. Недавно мы сообщили процесс роман опреснения, показаны хорошие удаления эффективность, Ион избирательности, устойчивости и повторного использования с помощью гибридного нано композитные материалы из золотых наночастиц (AuNPs)21,22 , 23. среди них, золотых наночастиц встроенный ацетилцеллюлозы мембраны (Au-CAM) способствовало высокоэффективных опреснения йодид-ионов в непрерывный поток системы, по сравнению с теми из существующих адсорбирующие материалы. Кроме того вся процедура может быть завершена в течение короткого времени, которое было еще одно преимущество для лечения ядерные отходы, образующиеся после использования в медицинских и промышленных целей. Общая цель этой рукописи является предоставлять пошаговые протокол для подготовки Au-CAM24. Мы также демонстрируют процесс фильтрации быстрый и удобный для ионоселективного захват радиоактивного йода с использованием инженерии композитных мембран. Подробный протокол в настоящем докладе будет предлагать полезное применение наноматериалов в области исследований экологической науки.
В последний год разработаны различные инженерии наноматериалов и мембраны для удаления опасных радиоактивных металлов и тяжелых металлов в воде, на основе их конкретных функциональных в адсорбции методы25,26, 27 , 28 …
The authors have nothing to disclose.
Эта работа была поддержана исследовательский грант от Национальный исследовательский фонд Кореи (номер гранта: 2017M2A2A6A01070858).
Hydrochloric acid | DUKSAN | 1129 | |
Nitric acid | JUNSEI | 37335-1250 | |
Chloroautic chloride trihydrate (HAuCl4·3H2O) | Sigma Aldrich | 254169 | |
Sodium citrate tribasic dihydrate | Sigma Aldrich | 71402 | |
[125I]NaI | Perkin-Elmer | NEZ033A010MC | |
Sodium chloride | Sigma Aldrich | S9888 | |
Sodium iodide | Sigma Aldrich | 383112 | |
Sodium hydroxide | Sigma Aldrich | S5881 | |
Lithium L-lactate | Sigma Aldrich | L2250 | Synthetic urine |
Citric acid | Sigma Aldrich | C1909 | Synthetic urine |
Sodium hydrogen carbonate | JUNSEI | 43305-1250 | Synthetic urine |
Urea | Sigma Aldrich | U1250 | Synthetic urine |
Calcium chloride | JUNSEI | 18230-0301 | Synthetic urine |
Magnesium sulfate | SAMCHUN | M0146 | Synthetic urine |
Potassium dihydrogen phosphate | JUNSEI | 84185A1250 | Synthetic urine |
Dipotassium hydrogen phosphate | JUNSEI | 84120-1250 | Synthetic urine |
Sodium sulfate | JUNSEI | 83260-1250 | Synthetic urine |
Ammonium chloride | Sigma Aldrich | A9434 | Synthetic urine |
Sea water | Sigma Aldrich | S9148 | |
1x PBS | Thermo | SH30256.01 | |
Cellulose acetate membranes (pore size: 0.20 μm, diameter: 25 mm) | Advantec MFS | 25CS045AS | |
Cellulose acetate membranes (pore size: 0.20 μm, diameter: 47 mm) | Advantec MFS | C045A047A | |
47 mm Glass Microanalysis Holders | Advantec MFS | KG47(311400) | |
Petri dish (50 mm diameter ´ 15 mm height) | SPL | 10050 | |
Gamma counter | Perkin-Elmer | 2480 WIZARD2 | Model number |
UV-vis spectrophotometer | Thermo | GENESYS 10 | Model number |
Transmission electron microscopy | Hitachi | H-7650 | Model number |
Field Emission Scanning electron microscope | FEI | Verios 460L | Model number |