Quantum integrated circuits (QICs) consisting of array of planar and ballistic Josephson junctions (JJs) based on In0.75Ga0.25As two-dimensional electron gas (2DEG) is demonstrated. Two different methods for fabrication of the two-dimensional (2D) JJs and QICs are discussed followed by the demonstration of quantum transport measurements in sub-Kelvin temperatures.
To form a coherent quantum transport in hybrid superconductor-semiconductor (S-Sm) junctions, the formation of a homogeneous and barrier-free interface between two different materials is necessary. The S-Sm junction with high interface transparency will then facilitate the observation of the induced hard superconducting gap, which is the key requirement to access the topological phases (TPs) and observation of exotic quasiparticles such as Majorana zero modes (MZM) in hybrid systems. A material platform that can support observation of TPs and allows the realization of complex and branched geometries is therefore highly demanding in quantum processing and computing science and technology. Here, we introduce a two-dimensional material system and study the proximity induced superconductivity in semiconducting two-dimensional electron gas (2DEG) that is the basis of a hybrid quantum integrated circuit (QIC). The 2DEG is a 30 nm thick In0.75Ga0.25As quantum well that is buried between two In0.75Al0.25As barriers in a heterostructure. Niobium (Nb) films are used as the superconducting electrodes to form Nb- In0.75Ga0.25As -Nb Josephson junctions (JJs) that are symmetric, planar and ballistic. Two different approaches were used to form the JJs and QICs. The long junctions were fabricated photolithographically, but e-beam lithography was used for short junctions’ fabrication. The coherent quantum transport measurements as a function of temperature in the presence/absence of magnetic field B are discussed. In both device fabrication approaches, the proximity induced superconducting properties were observed in the In0.75Ga0.25As 2DEG. It was found that e-beam lithographically patterned JJs of shorter lengths result in observation of induced superconducting gap at much higher temperature ranges. The results that are reproducible and clean suggesting that the hybrid 2D JJs and QICs based on In0.75Ga0.25As quantum wells could be a promising material platform to realize the real complex and scalable electronic and photonic quantum circuitry and devices.
A Josephson junction (JJ) is formed by sandwiching a thin layer of a non-superconducting (normal) material between two superconductors1. Various novel quantum electronic and photonic circuits and devices can be built based on JJs2,3,4,5,6,7,8,9,10,11,12,13,14,15,16. Among them, the JJs with semiconductor as their non-superconducting (normal) part, or superconductor-semiconductor-superconductor (S-Sm-S) JJs, have received much attention in recent years after the purported detection of exotic Majorana particles with zero electrical charges at the interface of a superconductor and a semiconducting one-dimensional (1D) nanowire17,18,19,20,21,22. Nanowire-based hybrid devices are limited to the 1D geometry of the nanowire and fabrication of Y and/or T-structures out of them – a necessary requirement for Majorana braiding- is challenging22. The fine tuning of nanowire’s chemical potential, for accessing topological phases, requires JJs with several electrostatically gates which causes quite a lot of issues in complex device fabrication out of nanowires. To overcome the scalability issues of 1D wires, two-dimensional (2D) material platforms are highly desirable19,22.
Among 2D materials, the two-dimensional electron gas (2DEG) platform -forms when electrons are confined to an interface between two different materials in a semiconductor heterostructure- is the most promising candidate22. The combination of 2DEG with superconductors and forming hybrid 2D JJs opens a new avenue towards the development of next-generation scalable quantum systems such as topological quantum processing and computing. They can support phase coherent quantum transport, and proximity induced superconductivity with high transmission probability, which are fundamental requirement for topological phase observation. In this regard, we demonstrate a QIC on a chip which consists of array of ballistic 2D JJs that can be controlled by 20 wires. Each junction has two Nb electrodes as the superconducting part and In0.75Ga0.25As quantum wells in a semiconducting heterojunction as the normal part. The wafer can be easily patterned to form complex structures and networked QICs.
The advantages of In0.75Ga0.25As 2DEG include: (i) relatively large g-factor, (ii) strong Rashba spin-orbit coupling, (iii) the low electron effective mass, and (iv) that the indium composition can be tuned allowing the formation of JJs with high interface transparency23,24,25. The wafer can be grown as a disk of up to 10 cm dimeter, allowing fabrication of thousands of hybrid 2D JJs and complex QICs networks so overcoming the scalability challenges of these quantum devices.
We discuss two different approaches for device fabrications: For device 1, a circuit which includes eight identical and symmetric JJs of 850 nm length and 4 μm widths are patterned by photolithography23,24. The device 2 includes eight junctions with different lengths. They all have the same width of 3 μm. The JJs are patterned by e-bam lithography25. The transport measurements at sub-Kelvin temperature ranges in absence/presence of magnetic field will be presented. The on-chip QICs consists of array of 2D Nb- In0.75Ga0.25As -Nb JJs. The long and short junctions are measured in a dilution fridge with a base temperature of 40 mK and liquid 3He cooled cryostat with a base temperature of 300 mK, respectively. Devices are biased with an ac-signal of 5 μV at 70 Hz which is superimposed to the junction dc voltage bias. A two-terminal standard lock-in technique is used to measure the device output ac-current23,24,25.
On-chip QICs comprising an array of JJs based on superconducting indium gallium arsenide (In0.75Ga0.25As) quantum wells were demonstrated. Two important challenges of hybrid S-Sm material systems such as the scalability and interface transparency were addressed. Two critical steps whining the protocol including the growth of high quality and high mobility In0.75Ga0.25As two-dimensional electron gas in semiconducting heterostructures and proximity induced superconductivity into 2DEG were discussed23,24,25.
Growth of In0.75Ga0.25As with step-graded buffer layers in GaAs substrate and also the formation of homogeneous and barrier-free interfaces between the superconductor and semiconductor is a crucial step in such hybrid 2D quantum circuit development. It was demonstrated that with careful etching the sputtered superconducting film can make highly transparent contacts to In0.75Ga0.25As quantum wells resulting in detection of induced superconducting gap in semiconductors23,24,25.
The significance with respect to existing methods is that the presented technique for 2D hybrid JJs and circuit realization does not require the insitu deposition of superconductor on semiconductors in an MBE chamber after the semiconductor growth has been completed23,24,25. The other significance is that the heterostructure wafer can be grown as a desk of up to 10 cm diameter, allowing the fabrication of thousands of hybrid 2D junctions and circuits, so overcoming the scalability challenges of the hybrid S-Sm quantum circuits and devices22,23,24,25.
The induced superconductivity in quantum wells, SGS on differential conductance of the 2D junctions, and the phase coherent ballistic quantum transport measured in our junctions strongly suggest that hybrid 2D junctions and circuits based on superconducting In0.75Ga0.25As 2DEG afford promising material system for scalable quantum processing and computing technologies. Our approach may open a new road toward quantum technology and helps pave the way for the development of on-chip topological quantum circuits for realizing the next generation of quantum processors23,24,25.
The authors have nothing to disclose.
The authors acknowledge financial support from EPSRC, grant MQIC.
CompactDAQ Chassis | National Instruments | NI cDAC-9178 | |
DSP Lock-in Amplifier | AMETEK 7265 | 190284-A-MNL-C | |
Dilution refrigerator | Blueforce | Buttom loaded fridge | |
Dilution refrigerator | Oxford | KelvinoxMX40 | Wet-fridge |
Diamond scriber MICROTEC | Karl Suss | HR 100 | |
Dektak Surface Profilometer | Veeco | 3ST | |
Evaporator | Edwards | AUTO 306 | |
Evaporator | Edwards | Coating system E306A | |
3He Cryostat | Oxford | ||
Photoresist Spinner | Headway Research Inc. | EC101DT-R790 | |
Matlab | |||
Mask Aligner | Karl Suss | MJB 3 | |
Source meter | Keithley | 2614B | |
Semiconducting heterostructure | MBE Veeco | Gen III system | MBE Grown wafers |
Wire Bonder | K&S | 4524 |