Com o objetivo de entender os comportamentos dos vários elementos de conjugativo bacterianos DNA sob diferentes condições, descrevemos um protocolo para a detecção de diferenças na frequência de conjugação, com alta resolução, para estimar quanto à eficácia da bactéria doadora inicia a conjugação.
Conjugação bacteriana é um passo importante na transferência horizontal de genes de resistência aos antibióticos através de um elemento conjugativo de DNA. Comparações em profundidade da frequência de conjugação em diferentes condições são necessárias para entender como o elemento conjugativo se espalha na natureza. No entanto, os métodos convencionais para comparar a frequência de conjugação não são apropriados para comparações em profundidade devido o fundo elevado causado pela ocorrência de eventos adicionais conjugação na placa seletiva. Com sucesso, nós reduzimos o fundo através da introdução de um método de (MPN) número mais provável e uma maior concentração de antibióticos para evitar a conjugação em meio líquido seletivo. Além disso, desenvolvemos um protocolo para estimar a probabilidade de como muitas vezes doador células iniciadas conjugação, classificando as células único doador em pools destinatários por fluorescência-ativado da pilha (FACS) de classificação. Usando dois plasmídeos, pBP136 e pCAR1, as diferenças na frequência de conjugação em células de Pseudomonas putida poderiam ser detectados em meio líquido em diferentes taxas de agitação. As frequências de início conjugação foram maiores para pBP136 do que para pCAR1. Usando estes resultados, podemos entender melhor as características de conjugação nestes dois plasmídeos.
Conjugação bacteriana de elementos genéticos móveis, plasmídeo conjugativo e elementos integrativo e conjugativo (CIEM) é importante para a propagação horizontal de informação genética. Pode promover a adaptação e a rápida evolução bacteriana e transmitir genes de resistência multidrogas1,2. A frequência de conjugação pode ser afetada por proteínas codificadas nos elementos conjugativo para mobilização de DNA (MOB) e formação de par acasalamento (MPF), incluindo pili sexual, que é classificados de acordo com a máfia e MPF tipo3,4, 5. Ele também pode ser afetado pelo dador e o receptor par6 e as condições de crescimento das células7,8,9,10,11,(12 taxa de crescimento, densidade celular, superfície sólida ou meio líquido, temperatura, disponibilidade de nutrientes e a presença de cátions). Para entender como os elementos conjugativo se espalhou entre as bactérias, é necessário comparar a frequência de conjugação em detalhe.
A frequência de conjugação entre o dador e o receptor pares após o acasalamento normalmente são estimados por métodos convencionais como segue. (i) em primeiro lugar, o número de colônias de dador e o receptor é contado; (ii) em seguida, as destinatários colônias, que recebeu os elementos conjugativo (= transconjugants) são contadas; (iii) e, finalmente, a frequência de conjugação é calculada dividindo-se a unidades (CFU) formadoras do transconjugants por aqueles do doador e/ou destinatário13. No entanto, ao usar esse método, o fundo é alto devido a eventos de conjugação adicionais que também podem ocorrer nas placas seletivas usadas para obter o transconjugants, quando a densidade celular é alto10. Portanto, é difícil de detectar pequenas diferenças na frequência (abaixo de uma diferença de 10 vezes). Nós recentemente introduziu um método de (MPN) de número mais provável usando meio líquido contendo uma concentração maior de antibióticos. Esse método reduziu o fundo inibindo mais conjugação em meio seletivo; assim, a frequência de conjugação pode ser estimada com maior resolução.
Conjugação pode ser dividida em três etapas: (1) acessório do doador-beneficiário par (2) início de transferência conjugativo e (3) dissociação do par14. Durante as etapas de (1) e (3), não há interação física entre o doador e receptor células; assim, a densidade celular e as condições ambientais podem influenciar estas etapas, embora as características de pili do sexo também são importantes. Passo (2) provavelmente é regulado pela expressão de vários genes envolvidos na conjugação em resposta às mudanças externas, o que poderia ser afetado por várias características do plasmídeo, doador e receptor. Embora a ligação física ou desprendimento dos pares doador-receptor pode ser matematicamente simulado usando uma estimativa de células como partículas, a frequência do passo (2) deve ser medida experimentalmente. Tem havido alguns relatórios sobre observações diretas de como muitas vezes os doadores podem iniciar a conjugação [passo (2)] usando fluorescência microscopia15,16; no entanto, esses métodos não são elevado-throughput porque um grande número de células deve ser monitorado. Portanto, nós desenvolvemos um novo método para estimar a probabilidade da ocorrência de passo (2) usando célula de fluorescência ativada classificação (FACS). Nosso método pode ser aplicado a qualquer plasmídeo, sem identificação dos genes essenciais para conjugação.
Aqui, apresentamos um protocolo de alta resolução para detectar diferenças na frequência de conjugação em condições diferentes, usando um método do MPN para estimar o número de transconjugants. Um passo importante no protocolo é diluir a mistura do doador e do receptor após o acasalamento até crescer sem transconjugants. Outro passo é adicionar altas concentrações de antibióticos para o meio líquido seletivo para evitar a conjugação. Estes procedimentos podem reduzir o fundo causado por conjugação m…
The authors have nothing to disclose.
Agradecemos o Dr. K. Kamachi do Instituto Nacional de doenças infecciosas (Japão) para fornecer pBP136 e Prof. Dr. H. Nojiri, da Universidade de Tóquio (Japão) para a prestação de pCAR1. Nós também estamos gratos ao Professor Dr. Molin Sølen da Universidade Técnica da Dinamarca para a prestação de pJBA28. Este trabalho foi apoiado pela JSPS KAKENHI (Grant Numbers 15H 05618 e 15KK0278) para MS (https://kaken.nii.ac.jp/en/grant/KAKENHI-PROJECT-15H05618/, https://kaken.nii.ac.jp/en/grant/KAKENHI-PROJECT-15KK0278/).
MoFlo XDP | Beckman-Coulter | ML99030 | FACS |
IsoFlow | Beckman-Coulter | 8599600 | Sheath solution |
Fluorospheres (10 μm) | Beckman-Coulter | 6605359 | beads to set up the FACS |
Incubator | Yamato Scientific Co. Ltd | 211197-IC802 | |
UV-VIS Spectrophotometer UV-1800 | SIMADZU Corporation | UV-1800 | |
96-well plates | NIPPON Genetics Co, Ltd | TR5003 | |
microplate type Petri dish | AXEL | 1-9668-01 | for validation of sorting |
membrane filter | ADVANTEC | C045A025A | for filter mating |
pippettes | Nichiryo CO. Ltd | 00-NPX2-20, 00-NPX2-200, 00-NPX2-1000 |
0.5-10 μL, 20-200 μL, 100-1000 μL |
multi-channel pippetes | Nichiryo CO. Ltd | 00-NPM-8VP, 00-NPM-8LP |
0.5-10 μL, 20-200 μL |
Tryptone | BD Difco | 211705 | |
Yeast extract | BD Difco | 212750 | |
NaCl | Sigma | S-5886 | |
Agar | Nakarai tesque | 01162-15 | |
rifampicin | Wako | 185-01003 | |
gentamicin | Wako | 077-02974 | |
kanamycin | Wako | 115-00342 | |
Petri dish | AXEL | 3-1491-51 | JPND90-15 |
microtubes | Fukaekasei | 131-815C | |
500 mL disposable spinner flask | Corning | CLS3578 |