Con l’obiettivo di comprendere i comportamenti dei vari elementi coniugativi batterici di DNA in condizioni diverse, descriviamo un protocollo per la rilevazione di differenze nella frequenza di coniugazione, con alta risoluzione, per stimare quanto efficientemente il batterio donatore avvia la coniugazione.
Coniugazione batterica è un passo importante nel trasferimento orizzontale di geni di resistenza agli antibiotici mediante un elemento di DNA coniugativi. Comparazioni approfondite di frequenza di coniugazione in diverse condizioni necessari per comprendere come l’elemento coniugativi si diffonde nella natura. Tuttavia, i metodi convenzionali per il confronto di frequenza di coniugazione non sono appropriati per i confronti approfonditi a causa l’elevato background causata dal verificarsi di eventi di coniugazione aggiuntive sulla piastra selettiva. Abbiamo ridotto con successo lo sfondo con l’introduzione di un metodo numero più probabile di (MPN) e una maggiore concentrazione di antibiotici per prevenire un ulteriore coniugazione in terreno liquido selettivo. Inoltre, abbiamo sviluppato un protocollo per la stima della probabilità di come spesso donatore cellule iniziano coniugazione di ordinamento celle singolo donatore nel destinatario di pool di fluorescenza-attivato delle cellule ordinano (FACS). Utilizzando due plasmidi, pBP136 e pCAR1, le differenze nella frequenza di coniugazione in Pseudomonas putida cellule potrebbe essere rilevati in terreno liquido a diversi tassi di agitazione. Le frequenze dell’iniziazione di coniugazione erano più alti per pBP136 che per pCAR1. Utilizzando questi risultati, possiamo capire meglio le funzionalità di coniugazione di questi due plasmidi.
Coniugazione batterica di elementi genetici mobili, plasmidi coniugativi ed elementi integranti e coniugativi (CIEM) è importante per la diffusione orizzontale delle informazioni genetiche. Può promuovere l’adattamento e la rapida evoluzione batterica e trasmettere la resistenza del multidrug geni1,2. La frequenza di coniugazione può essere influenzata da proteine codificate sugli elementi coniugativi mobilitazione dei DNA (MOB) e formazione di accoppiamento coppia (MPF), tra cui pili di sesso, che sono classificati secondo MOB e MPF tipo3,4, 5. Esso può essere influenzata anche dal donatore e ricevente coppia6 e le condizioni di crescita delle cellule7,8,9,10,11,12 ( tasso di crescita, densità cellulare, superficie del solido o liquido, temperatura, disponibilità nutriente e alla presenza di cationi). Per capire come gli elementi coniugativi diffusione tra batteri, è necessario confrontare la frequenza di coniugazione in dettaglio.
La frequenza di coniugazione tra donatore e destinatario coppie dopo l’accoppiamento di solito sono stimati con i metodi convenzionali come segue. (i) in primo luogo, il numero di colonie di donatore e ricevente è contato; (ii) quindi, sono contate le colonie destinatario, che ha ricevuto gli elementi coniugativi (= transconjugants); (iii) e infine, la frequenza di coniugazione è calcolata dividendo l’unità formanti colonia (UFC della transconjugants) per quelli del donatore e/o destinatario13. Tuttavia, quando si utilizza questo metodo, lo sfondo è alto a causa di eventi di coniugazione aggiuntivi che possono verificarsi anche sulle piastre selettive utilizzate per ottenere transconjugants quando la densità cellulare è alta10. Di conseguenza, è difficile da rilevare piccole differenze nella frequenza (sotto una differenza di 10 volte). Abbiamo recentemente introdotto un metodo (MPN) numero più probabile, utilizzando il mezzo liquido che contiene una maggiore concentrazione di antibiotici. Questo metodo ha ridotto lo sfondo inibendo ulteriormente coniugazione in terreno selettivo; quindi, potrebbe essere valutata la frequenza di coniugazione con risoluzione superiore.
Coniugazione può essere suddiviso in tre passaggi: (1) allegato del donatore-destinatario coppia (2) l’inizio del trasferimento coniugativi e (3) la dissociazione della coppia14. Durante la procedura (1) e (3), non c’è interazione fisica tra il donatore e cellule recettive; così, la densità delle cellule e delle condizioni ambientali possono influenzare questi passaggi, anche se le caratteristiche di pili il sesso sono anche importanti. Passo (2) probabilmente è regolata dall’espressione di diversi geni coinvolti nella coniugazione in risposta ai cambiamenti esterni, che potrebbe essere influenzata da varie caratteristiche del plasmide, del donatore e del ricevente. Anche se il fisico allegato o distacco di coppie donatore-ricevente può essere matematicamente simulato utilizzando una stima delle cellule come particelle, la frequenza di passaggio (2) deve essere misurata sperimentalmente. Ci sono state alcune segnalazioni su osservazioni dirette di come spesso i donatori possono avviare coniugazione [passo (2)] mediante fluorescenza microscopia15,16; Tuttavia, questi metodi non sono ad alta velocità, perché un numero elevato di celle dovrà essere monitorato. Di conseguenza, abbiamo sviluppato un nuovo metodo per stimare la probabilità di occorrenza di passaggio (2) utilizzando celle attivate la fluorescenza che ordinano (FACS). Il nostro metodo può essere applicato a qualsiasi plasmide, senza identificazione dei geni essenziali per coniugazione.
Qui, presentiamo un protocollo ad alta risoluzione per individuare differenze nella frequenza di coniugazione in condizioni diverse, utilizzando un metodo MPN per stimare il numero di transconjugants. Un passo importante nel protocollo è diluire la miscela del donatore e del ricevente dopo l’accoppiamento fino a quando non transconjugants crescere. Un altro passo è aggiunta di alte concentrazioni di antibiotici al mezzo liquido selettivo per prevenire ulteriori coniugazione. Queste procedure possono ridurre lo sfondo c…
The authors have nothing to disclose.
Ringraziamo il Dr. K. Kamachi del National Institute of Infectious Diseases (Giappone) per la fornitura di pBP136 e Dr. H. Nojiri dell’Università di Tokyo (Giappone) per la fornitura di pCAR1. Siamo anche grati al Professor Dr. Molin Sølen della Technical University of Denmark per fornire pJBA28. Questo lavoro è stato supportato da JSPS KAKENHI (Grant numeri 15H 05618 e 15KK0278) per MS (https://kaken.nii.ac.jp/en/grant/KAKENHI-PROJECT-15H05618/, https://kaken.nii.ac.jp/en/grant/KAKENHI-PROJECT-15KK0278/).
MoFlo XDP | Beckman-Coulter | ML99030 | FACS |
IsoFlow | Beckman-Coulter | 8599600 | Sheath solution |
Fluorospheres (10 μm) | Beckman-Coulter | 6605359 | beads to set up the FACS |
Incubator | Yamato Scientific Co. Ltd | 211197-IC802 | |
UV-VIS Spectrophotometer UV-1800 | SIMADZU Corporation | UV-1800 | |
96-well plates | NIPPON Genetics Co, Ltd | TR5003 | |
microplate type Petri dish | AXEL | 1-9668-01 | for validation of sorting |
membrane filter | ADVANTEC | C045A025A | for filter mating |
pippettes | Nichiryo CO. Ltd | 00-NPX2-20, 00-NPX2-200, 00-NPX2-1000 |
0.5-10 μL, 20-200 μL, 100-1000 μL |
multi-channel pippetes | Nichiryo CO. Ltd | 00-NPM-8VP, 00-NPM-8LP |
0.5-10 μL, 20-200 μL |
Tryptone | BD Difco | 211705 | |
Yeast extract | BD Difco | 212750 | |
NaCl | Sigma | S-5886 | |
Agar | Nakarai tesque | 01162-15 | |
rifampicin | Wako | 185-01003 | |
gentamicin | Wako | 077-02974 | |
kanamycin | Wako | 115-00342 | |
Petri dish | AXEL | 3-1491-51 | JPND90-15 |
microtubes | Fukaekasei | 131-815C | |
500 mL disposable spinner flask | Corning | CLS3578 |