A produção de células especializadas da retina, de células-tronco pluripotentes é um ponto de viragem no desenvolvimento da terapia baseada em células-tronco para doenças da retina. O presente documento descreve um método simples para uma eficiente geração de organoids da retina e Epitélio pigmentado da retina para pesquisa básica, translacional e clínica.
A produção de células especializadas de células-tronco pluripotentes fornece uma ferramenta poderosa para desenvolver novas abordagens para a medicina regenerativa. O uso de células-tronco pluripotentes induzidas pelo homem (iPSCs) é particularmente atraente para estudos de doenças neurodegenerativas, incluindo distrofias da retina, onde modelos de iPSC-derivado de células da retina marcam um grande passo em frente para compreender e lutar contra a cegueira. Neste trabalho, descrevemos um protocolo simples e escalável para gerar, maduro e cryopreserve organoids da retina. Baseado nas alterações de médio, a principal vantagem deste método é evitar múltiplas e comumente necessárias etapas demoradas em uma diferenciação guiada de iPSCs. Imitando as primeiras fases do desenvolvimento da retina por sucessivas mudanças de meios definidos em culturas de iPSC humana aderente, este protocolo permite a geração simultânea de automoldável estruturas neuroretinal e da retina pigmentada (RPE) as células epiteliais em um maneira eficiente e reproduzível em 4 semanas. Estas estruturas contendo células progenitoras da retina (RPCs) podem ser facilmente isoladas para maturação ainda mais em uma condição de cultura flutuante, permitindo a diferenciação de RPCs nos sete tipos de célula da retina presentes na retina humana adulta. Além disso, descrevemos os métodos rápidos para a criopreservação de organoids da retina e as células RPE para armazenamento a longo prazo. Combinados, os métodos descritos aqui será útil para produzir e banco iPSC-derivado da retina células ou tecidos para a investigação básica e clínica.
A retina é uma parte integrante do sistema nervoso central (SNC) e tem uma capacidade limitada para regenerar espontaneamente após uma lesão traumática ou doenças. Portanto, patologias degenerativas, causando a perda definitiva de células da retina, como a degeneração macular relacionada à idade (DMRI), retinite pigmentosa (RP), glaucoma e retinopatia diabética, normalmente levam a cegueira irreversível. Resgatando a retina degenerada é um grande desafio para o qual terapias baseadas em células-tronco, com o objetivo de substituir as células danificadas ou perdidas são uma das mais promissoras abordagens1,2,3. Células-tronco pluripotentes como células-tronco embrionárias humanas (CES) células ou células-tronco pluripotentes induzidas pelo homem (iPSCs) têm a capacidade de ser expandido indefinidamente em cultura, e eles têm potencial para produzir quaisquer tipos de células. Avanços em nossa compreensão do desenvolvimento da retina e a melhoria do in vitro protocolos para diferenciação de iPSC humana resultaram na geração de retina organoids7,8,9, 10,11,12. Todas as principais células da retina, incluindo células ganglionares da retina (RGCs), fotorreceptores e células da retina pigmentadas epiteliais (RPE), tem sido com sucesso diferenciadas da humana CES e iPSCs4,5, 6. baseado no método desenvolvido por Eiraku et al SFEB (cultura dos agregados do embryoid do corpo-como isento de soro) 13, auto formação de organoids da retina pode ser obtida ESC ou iPSC-derivado do embryoid corpo-como agregados em componentes de matriz extracelular definidos a7,10,14. Mas estes protocolos são complexas, que exigem um grande número de passos não é sempre compatíveis com a grande produção de células para abordagens terapêuticas ou triagem de drogas. Assim, a escolha do método para a produção de células da retina humanas é crítica e o método precisa ser robusto, escalável e eficiente.
Aqui, com base na nossa anterior publicação15, descrevemos cada passo para uma simples e eficiente geração de células da retina através da retina organoides auto formação de aderentes iPSCs humana cultivada em uma condição livre de alimentador e xeno. A partir de culturas de rotina de iPSCs humana aderente, este protocolo requer apenas um simples meio sucessivo mudando para permitir a geração de células iPS-derivado de RPE (hiRPE) e neuroretinal estruturas em 4 semanas. Após um isolamento manual, hiRPE pode ser expandido e as estruturas da retina podem ser cultivadas como flutuante organoids onde as células progenitoras da retina são capazes de se diferenciar em todos os tipos de células da retina em ordem sequencial consistente com o humano na vivo retinogenesis. Finalmente, para o avanço de pesquisa ou clínica tradução, descrevemos um método de criopreservação, permitindo o armazenamento a longo prazo do organoids inteiro da retina e células hiRPE sem afetar suas características fenotípicas e funcionalidade.
Este protocolo descreve como produzir as células RPE e organoids da retina, contendo RGCs da retina e fotorreceptores, de células-tronco pluripotentes humanas em condições de livre de xeno e alimentador. Compatível com o processo de boas práticas de fabricação (BPF), o método cultivado aqui apresentada permite uma grande produção de iPSC-derivado de células da retina como RPE células RGCs e fotorreceptores para o desenvolvimento de terapias baseadas em células-tronco e drogas abordagens de descoberta para o…
The authors have nothing to disclose.
Os autores gostaria de agradecer aos membros da equipe do Goureau para sua entrada durante o set-up dos métodos descritos aqui e G. Gagliardi e M. Garita para sua leitura crítica. Este trabalho foi apoiado por concessões do ANR (GPiPS: ANR-2010-RFCS005; SightREPAIR: ANR-16-CE17-008-02), a associação de França de Retina e a transferência de tecnologia empresa Lutech SATT. Também foi realizada no quadro do LABEX LIFESENSES (ANR-10-LABX-65) suportado pela ANR dentro do programa de d’Avenir de Investissements (ANR-11-IDEX-0004-02).
Vitronectin (VTN-N) Recombinant Human Protein, Truncated | ThermoFisher Scientific | A14700 | Coating |
CTS Vitronectin (VTN-N) Recombinant Human Protein, Truncated | ThermoFisher Scientific | A27940 | Coating |
Essential 8 Medium | ThermoFisher Scientific | A1517001 | medium |
Essential 6 Medium | ThermoFisher Scientific | A1516401 | medium |
CTS (Cell Therapy Systems) N-2 Supplement | ThermoFisher Scientific | A1370701 | supplement CTS |
N-2 Supplement (100X) | ThermoFisher Scientific | 17502048 | supplement |
B-27 Supplement (50X), serum free | ThermoFisher Scientific | 17504044 | supplement |
CTS B-27 Supplement, XenoFree | ThermoFisher Scientific | A1486701 | supplement CTS |
DMEM/F-12 | ThermoFisher Scientific | 11320074 | medium |
MEM Non-Essential Amino Acids Solution (100X) | ThermoFisher Scientific | 11140035 | supplement |
Penicillin-Streptomycin (10,000 U/mL) | ThermoFisher Scientific | 15140122 | antibiotic |
CellStart CTS | ThermoFisher Scientific | A1014201 | Matrix CTS |
Geltrex hESC-Qualified, Ready-To-Use, Reduced Growth Factor Basement Membrane Matrix | ThermoFisher Scientific | A1569601 | Matrix |
Gentle Cell Dissociation Reagent | Stemcell Technologies | 7174 | dissociation solution |
Cryostem Freezing Media | clinisciences | 05-710-1D | Cryopreservation medium |
Fibroblast growth factor 2 (FGF2) | Preprotech | 100-18B | FGF2 |
Fibroblast growth factor 2 (FGF2) animal free | Preprotech | AF-100-18B | FGF2 Xeno free |
AGANI needle 23G | Terumo | AN*2332R1 | Needle |
Flask 25 cm² Tissue Culture Treated | Falcon | 353109 | T-25 cm² |
24 well plate Tissue Culture Treated | Costar | 3526 | 24-well plate |
6 well plate Tissue Culture Treated | Costar | 3516 | 6-well plate |