Die Produktion von spezialisierten netzhautzellen aus pluripotenten Stammzellen ist ein Wendepunkt in der Entwicklung der Stammzell-Therapie für Erkrankungen der Netzhaut. Der vorliegende Beitrag beschreibt eine einfache Methode für eine effiziente Erzeugung von retinalen Organellen und retinalen Pigment Epithel für Grund-, translationalen und klinischen Forschung.
Die Produktion von spezialisierten Zellen aus pluripotenten Stammzellen ist ein leistungsstarkes Tool, um neue Ansätze für die regenerative Medizin zu entwickeln. Die Verwendung von Human-induzierte pluripotente Stammzellen (iPSCs) ist besonders attraktiv für Neurodegenerative Krankheit Studien, einschließlich retinale Dystrophien, wo mark iPSC-abgeleitete retinalen zellmodelle einen großen Schritt nach vorn zu verstehen und zu bekämpfen Blindheit. In diesem Artikel beschreiben wir eine einfache und skalierbare Protokoll zu generieren, Reifen und Tiefgefrieren retinale Organellen. Basierend auf mittlere ändern, der Hauptvorteil dieser Methode ist es, mehrere zu vermeiden und zeitaufwändigen Schritte häufig in eine geführte Differenzierung der iPSCs erforderlich. Imitiert die frühen Phasen der retinalen Entwicklung durch aufeinander folgende Veränderungen der definierten Medien auf anhaftende menschlichen iPSC Kulturen, dieses Protokoll ermöglicht die gleichzeitige Erzeugung von selbst-Bildung neuroretinale Strukturen und Netzhaut pigmentiert (RPE) Epithelzellen in eine reproduzierbare und effiziente Weise in 4 Wochen. Diese Strukturen mit retinale Vorläuferzellen (RPCs) können für die weitere Reifung in einem schwimmenden Kultur Zustand ermöglicht die Differenzierung von RPCs in sieben retinalen Zelltypen im Erwachsenen menschlichen Netzhaut leicht isoliert werden. Darüber hinaus beschreiben wir schnelle Methoden für die Kryokonservierung von retinalen Organellen und RPE-Zellen für die langfristige Lagerung. Die hier beschriebenen Methoden werden miteinander kombiniert, zu produzieren und bank menschlichen iPSC-abgeleitete retinalen Zellen oder Gewebe für Grundlagenforschung und klinische Forschung nützlich.
Die Netzhaut ist Bestandteil des zentralen Nervensystems (ZNS) und hat eine begrenzte Kapazität, spontan nach einer traumatischen Verletzung oder Krankheiten zu regenerieren. Daher führen degenerative Pathologien verursachen definitive retinalen Zellverlust, wie Altersbedingte Makula-Degeneration (AMD), Retinitis Pigmentosa (RP), Glaukom und Diabetische Retinopathie, in der Regel zur irreversiblen Erblindung. Rettung der degenerierten Netzhaut ist eine große Herausforderung für die stammzellbasierte Therapien mit dem Ziel, ersetzen Sie die beschädigten oder verloren gegangene Zellen eine der vielversprechendsten Ansätze1,2,3 sind. Pluripotente Stammzellen als menschlicher embryonaler Stammzellen (WSR) Zellen oder Mensch-induzierte pluripotente Stammzellen (iPSCs) haben die Fähigkeit, auf unbestimmte Zeit in Kultur erweitert werden, und sie haben das Potenzial, alle Arten von Zellen zu produzieren. Fortschritte im Verständnis der retinalen Entwicklung und die Verbesserung der in-vitro- Protokolle für menschlichen iPSC Differenzierung führten zu der Generation von retinalen Organellen7,8,9, 10,11,12. Alle wichtigen retinalen Zellen, einschließlich der retinalen Ganglienzellen (Routinggruppenconnectors), Photorezeptoren und Netzhaut pigmentiert (RPE) Epithelzellen, haben erfolgreich unterschieden von menschlichen WSR und iPSCs4,5, 6. basierend auf der SFEB (serumfreien Kultur Embryoid Körper-wie Aggregate)-Methode, entwickelt von Eiraku Et Al. 13, erhalten Sie zur Bildung von retinalen Organellen von ESC oder iPSC abgeleitet Embryoid Körper-ähnlichen Aggregaten in definierten extrazelluläre Matrix Komponenten7,10,14. Aber diese Protokolle sind kompliziert, erfordert eine große Anzahl von Schritten nicht immer kompatibel mit der Großserienfertigung von Zellen für therapeutische Ansätze oder Drogen-Screening. So, die Wahl der Methode, menschliche netzhautzellen zu produzieren ist von entscheidender Bedeutung und die Methode muss robuste, skalierbare und effizient sein.
Hier, beschreiben basierend auf unseren vorherigen Veröffentlichung15, wir alle notwendigen Schritte für eine einfache und effiziente Generation von netzhautzellen durch Netzhaut organoide Self Bildung von anhaftenden menschlichen iPSCs in einem Feeder frei und Xeno Zustand gepflegt. Ausgehend von routinemäßigen Kulturen der anhaftende menschliche iPSCs, erfordert dieses Protokoll nur eine einfache aufeinanderfolgenden Medium ändern, um die Erzeugung von iPS-gewonnenen RPE (HiRPE) Zellen und neuroretinale Strukturen in 4 Wochen zu ermöglichen. Nach einer manuellen Isolierung HiRPE erweitert werden kann und die Netzhaut Strukturen können gezüchtet werden, als schwimmende Organellen wo sind die retinale Vorläuferzellen in alle retinale Zelltypen in einer sequentiellen Reihenfolge Einklang mit der in-Vivo -Mensch zu unterscheiden Retinogenesis. Zu guter Letzt für Forschung Fortschritt oder Übersetzung klinischer beschreiben wir eine Kryokonservierung Methode ermöglicht die langfristige Lagerung der gesamten Netzhaut Organellen und HiRPE Zellen ohne Beeinträchtigung ihrer phänotypischen Eigenschaften und Funktionalität.
Dieses Protokoll beschreibt die RPE-Zellen und Netzhaut Organellen mit retinalen Routinggruppenconnectors und Photorezeptoren, aus menschlicher pluripotenter Stammzellen im Xeno frei und Feeder Bedingungen produzieren. Kompatibel mit der Good Manufacturing Practice (GMP), die Methode kultiviert hier vorgestellten ermöglicht eine große Produktion von iPSC-abgeleitete netzhautzellen RPE Zellen Routinggruppenconnectors und Photorezeptoren für die Entwicklung der stammzellbasierte Therapien und Medikamenten Entdeckung-Ans…
The authors have nothing to disclose.
Die Autoren möchten beim Aufbau der hier beschriebenen Methoden und G. Gagliardi und M. Garita für ihre kritischen Lektüre Goureau Team für ihre Beiträge danken. Diese Arbeit wurde unterstützt durch Zuschüsse aus dem ANR (GPiPS: ANR-2010-RFCS005; SightREPAIR: ANR-16-CE17-008-02), die Netzhaut Frankreich Association und der Technologietransfer Unternehmen SATT Lutech. Es wurde auch im Rahmen der LABEX LIFESENSES (ANR-10-LABX-65) unterstützt durch die ANR programmintern Investissements Avenir (ANR-11-IDEX-0004-02) durchgeführt.
Vitronectin (VTN-N) Recombinant Human Protein, Truncated | ThermoFisher Scientific | A14700 | Coating |
CTS Vitronectin (VTN-N) Recombinant Human Protein, Truncated | ThermoFisher Scientific | A27940 | Coating |
Essential 8 Medium | ThermoFisher Scientific | A1517001 | medium |
Essential 6 Medium | ThermoFisher Scientific | A1516401 | medium |
CTS (Cell Therapy Systems) N-2 Supplement | ThermoFisher Scientific | A1370701 | supplement CTS |
N-2 Supplement (100X) | ThermoFisher Scientific | 17502048 | supplement |
B-27 Supplement (50X), serum free | ThermoFisher Scientific | 17504044 | supplement |
CTS B-27 Supplement, XenoFree | ThermoFisher Scientific | A1486701 | supplement CTS |
DMEM/F-12 | ThermoFisher Scientific | 11320074 | medium |
MEM Non-Essential Amino Acids Solution (100X) | ThermoFisher Scientific | 11140035 | supplement |
Penicillin-Streptomycin (10,000 U/mL) | ThermoFisher Scientific | 15140122 | antibiotic |
CellStart CTS | ThermoFisher Scientific | A1014201 | Matrix CTS |
Geltrex hESC-Qualified, Ready-To-Use, Reduced Growth Factor Basement Membrane Matrix | ThermoFisher Scientific | A1569601 | Matrix |
Gentle Cell Dissociation Reagent | Stemcell Technologies | 7174 | dissociation solution |
Cryostem Freezing Media | clinisciences | 05-710-1D | Cryopreservation medium |
Fibroblast growth factor 2 (FGF2) | Preprotech | 100-18B | FGF2 |
Fibroblast growth factor 2 (FGF2) animal free | Preprotech | AF-100-18B | FGF2 Xeno free |
AGANI needle 23G | Terumo | AN*2332R1 | Needle |
Flask 25 cm² Tissue Culture Treated | Falcon | 353109 | T-25 cm² |
24 well plate Tissue Culture Treated | Costar | 3526 | 24-well plate |
6 well plate Tissue Culture Treated | Costar | 3516 | 6-well plate |