Summary

Tracing Gene Expression Through Detection of β-galactosidase Activity in Whole Mouse Embryos

Published: June 26, 2018
doi:

Summary

Here we describe the standard protocol for the detection of β-galactosidase activity in early whole mouse embryos and the method for paraffin sectioning and counterstaining. This is an easy and quick procedure to monitor gene expression during development that can also be applied to tissue sections, organs or cultured cells.

Abstract

The Escherichia coli LacZ gene, encoding β-galactosidase, is largely used as a reporter for gene expression and as a tracer in cell lineage studies. The classical histochemical reaction is based on the hydrolysis of the substrate X-gal in combination with ferric and ferrous ions, which produces an insoluble blue precipitate that is easy to visualize. Therefore, β-galactosidase activity serves as a marker for the expression pattern of the gene of interest as the development proceeds. Here we describe the standard protocol for the detection of β-galactosidase activity in early whole mouse embryos and the subsequent method for paraffin sectioning and counterstaining. Additionally, a procedure for clarifying whole embryos is provided to better visualize X-gal staining in deeper regions of the embryo. Consistent results are obtained by performing this procedure, although optimization of reaction conditions is needed to minimize background activity. Limitations in the assay should be also considered, particularly regarding the size of the embryo in whole mount staining. Our protocol provides a sensitive and a reliable method for β-galactosidase detection during the mouse development that can be further applied to the cryostat sections as well as whole organs. Thus, the dynamic gene expression patterns throughout development can be easily analyzed by using this protocol in whole embryos, but also detailed expression at the cellular level can be assessed after paraffin sectioning.

Introduction

In order to describe specific gene expression patterns, the use of reporter genes as markers has been paramount from Drosophila to mammals. In experiments involving transgenic and knockout animals, the bacterial β-galactosidase gene (LacZ) of Escherichia coli (E. coli) is one of the most widely used1,2,3,4. β-galactosidase (β-gal) catalyzes the hydrolysis of β-galactosides (such as lactose) into its monosaccharides (glucose and galactose)5. Its most commonly used substrate is X-gal (5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside), a glycoside that is hydrolyzed by β-galactosidase giving rise to 5-bromo-4-chloro-3-hydroxyindole and galactose. The first is oxidized into a dimer that, when used combined with potassium ferri-and ferro-cyanide, produces a characteristic insoluble, blue color precipitate (Figure 1)6.

The LacZ gene started to be used as a reporter gene over thirty years ago7,8. Usually, LacZ is inserted downstream of an endogenous promoter in the place of the open reading frame, so it can be used in bacterial and cell culture to visualize cells containing a particular insert, as well as in transgenic animals as a tracer of endogenous gene expression patterns during development9. In this regard, the visualization of β-galactosidase activity has been extensively used in Drosophila to understand the developmental and cellular processes from single cells to whole tissues. Drosophila genetics favor the generation of stable lines in which a modified P-element construct containing the reporter gene LacZ is inserted at random locations in the genome. Thus, when placed under the influence of enhancer elements it may drive its expression in a tissue specific manner, which has allowed the systematic analysis of the expression patterns of many genes during the past two decades10. In addition, the use of transgenic mice to monitor LacZ gene expression also allows detection of gene recombination events by Cre-loxP mediated recombination, and localization of the mutant embryonic stem cell derivatives in chimeric analyses11, which facilitates the control of LacZ expression in specific tissues as well as temporally. Also, in whole embryos, detection of the β-galactosidase activity may produce differential staining patterns at different intensities that can be conveniently observed across different developmental stages to analyze temporal changes in gene expression8,12.

In this article, we present a protocol to visualize gene expression through X-gal staining in the whole mount tissue at early developmental stages of mouse embryos. We present this histochemical method as a highly sensitive and inexpensive technique that favors accurate detection of the labeled cells either in whole mount specimens or at the cellular level after paraffin embedded tissues or embryos. The method allows for the direct visualization of staining in the mouse tissue with the minimum background when compared with other methods13.

Protocol

All experimental procedures were approved by the Committee on the Ethics of Animal Experiments of the CNIC (Centro Nacional de Investigaciones Cardiovasculares) and the Comunidad Autónoma de Madrid to ensure minimal animal suffering. 1. Collection of Embryos from Pregnant Mice (from E8.5 to E12.5) Sacrifice pregnant mice by either cervical dislocation or CO2 inhalation. The day of the first observed vaginal plug was considered embryonic day 0.5 (E0.5). Lay…

Representative Results

Here we show the results from applying the standard protocol for the β-galactosidase histochemical reaction using X-gal as the substrate in whole mouse embryos (Figure 1 and Figure 2). By using this protocol, we examine Membrane type 4-matrix metalloproteinase (Mt4-mmp) expression at different embryonic developmental stages (E9.5, E11.5, and E12.5) using Mt4-mmp mutant mice that express the LacZ reporter under the control of…

Discussion

The E. coli LacZ gene has been widely used as a reporter in studies of gene expression patterns because of its high sensitivity and ease of detection. The present protocol describes a classic method for detecting β-gal expression based on an enzymatic reaction that is easy and quick to perform as well as inexpensive. This method can be also applied without major modifications in whole mount embryos, intact organs, cryostat tissue sections or cultured cells.

Accurate application o…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

We would like to thank the Histopathological Service for their technical assistance at the Centro Nacional de Investigaciones Cardiovasculares (CNIC). We also thank Dr. Motoharu Seiki for kindly providing Mt4-mmpLacZ mice, and Dr. Alicia G. Arroyo for supporting our project and for her critical reading of the manuscript. We wish to thank Peter Bonney for proofreading this article. This work was supported by Universidad Europea de Madrid by means of a grant (# 2017UEM01) awarded to C.S.C.

Materials

REAGENTS
2-Propanol SIGMA-ALDRICH 24137-1L-R
Agarose SCHARLAU 50004/ LE3Q2014
Aqueous mounting medium VECTOR LABS H-5501
Synthetic mounting media MERCK 100579
96% Ethanol PROLABO 20824365
99.9% Ethanol absolute SCHARLAU ET00021000
50% Glutaraldehyde solution SIGMA-ALDRICH G6403-100ml
85% Glycerol MERCK 104094
99.9% Glycerol SIGMA-ALDRICH G5516
Magnesium chloride hexahydrate SIGMA-ALDRICH 63064
Nonionic surfactant (Nonidet P-40) SIGMA-ALDRICH 542334
Nuclear Fast Red counterstain SIGMA-ALDRICH N3020
Paraffin pastilles MERCK 111609
Paraformaldehyde SIGMA-ALDRICH 158127-500g
Phosphate buffered saline (tablets) SIGMA-ALDRICH P4417-50TAB
Potassium ferrocyanate MERCK 1049840500
Potassium ferrocyanide MERCK 1049731000
Sodium azide SIGMA-ALDRICH S8032
Sodium deoxycholate SIGMA-ALDRICH 30970
Sodium dihydrogen phosphate monohydrate SIGMA-ALDRICH 106346
Sodium phosphate dibasic dihydrate SIGMA-ALDRICH 71638
Thymol SIGMA-ALDRICH T0501
Tris hydrochloride (Tris HCl) SIGMA-ALDRICH 10812846001 (Roche)
X-GAL VENN NOVA R-0004-1000
Xylene VWR CHEMICALS VWRC28973.363
EQUIPMENT
Disposable plastic cryomolds 15x15x5 mm SAKURA 4566
Rotatory Microtome Leica RM2235
Cassettes Oxford Trade OT-10-9046
Microscope Cover Glasses 24×60 mm VWR ECN631-1575
Microscope slides Thermo Scientific, MENZEL-GLÄSER AGAA000001#12E
Adhesion microscope slides Thermo Scientific, MENZEL-GLÄSER J1820AMNZ
Flotation Water bath Leica HI1210
Disposable Low Profile Microtome Blades Feather UDM-R35
Paraffin oven J.R. SELECTA 2000205
Wax Paraffin dispenser J.R. SELECTA 4000490
Stereomicroscope Leica DM500
Polypropylene microcentrifuge tubes 2.0 mL SIGMA-ALDRICH T2795
Polypropylene microcentrifuge tubes 1.5 mL SIGMA-ALDRICH T9661
Orbital shaker IKA Labortechnik HS250 BASIC
Stirring Hot Plate Bibby HB502
Vortex Shaker IKA Labortechnik MS1
Laboratory scale GRAM FH-2000
Precision scale Sartorius ISO9001
pHmeter Crison Basic 20
Optic fiber Optech PL2000

Referencias

  1. Shuman, H. A., Silhavy, T. J., Beckwith, J. R. Labeling of proteins with beta-galactosidase by gene fusion. Identification of a cytoplasmic membrane component of the Escherichia coli maltose transport system. The Journal of Biological Chemistry. 255, 168-174 (1980).
  2. Cui, C., Wani, M. A., Wight, D., Kopchick, J., Stambrook, P. J. Reporter genes in transgenic mice. Transgenic Research. 3, 182 (1994).
  3. Takahashi, E., et al. Expression analysis of Escherichia coli lacZ reporter gene in transgenic mice. Brain Research. Brain Research Protocols. 5 (2), 159-166 (2000).
  4. Burn, S. F. Detection of β-Galactosidase Activity: X-gal Staining. Methods Mol Biol. 886, 241-250 (2012).
  5. Jacob, F., Monod, J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol. 3, 318-356 (1961).
  6. Pearson, B., Wolf, P. L., Vazquez, J. A comparative study of a series of new indolyl compounds to localize beta-galactosidase in tissues. Laboratory Investigation; a Journal of Technical Methods and Pathology. 12, 1249-1259 (1963).
  7. Kothary, R., et al. A transgene containing lacZ inserted into the dystonia locus is expressed in neural tube. Nature. 335 (6189), 435-437 (1988).
  8. Kothary, R., et al. Inducible expression of an hsp68-lacZ hybrid gene in transgenic mice. Development. 105 (4), 707-714 (1989).
  9. Blanco, M. J., et al. Developmental expression of membrane type 4-matrix metalloproteinase (Mt4-mmp/Mmp17) in the mouse embryo. PLOS ONE. 12 (9), e0184767 (2017).
  10. Hartenstein, V., Jan, Y. N. Studying Drosophila embryogenesis with P-lacZ enhancer trap lines. Roux’s Archives of Developmental Biology. 201 (4), 194-220 (1992).
  11. Gierut, J. J., Jacks, T. E., Haigis, K. M. Whole-mount X-Gal staining of mouse tissues. Cold Spring Harb Protoc. 1 (4), 417-419 (2014).
  12. Cooper, M. A., Zhou, R. β-Galactosidase Staining of LacZ Fusion Proteins in Whole Tissue Preparations. Methods Mol Biol. 1018, 189-197 (2013).
  13. Sundararajan, S., Wakamiya, M., Behringer, R. R., Rivera-Pérez, J. A. A fast and sensitive alternative for β-galactosidase detection in mouse embryos. Development. 139 (23), 4484-4490 (2012).
  14. Wei, Q., Manley, N. R., Condie, B. G. Whole mount in situ hybridization of E8.5 to E11.5 mouse embryos. Journal of Visualized Experiments. 56, 2797 (2011).
  15. Rikimaru, A., et al. Establishment of an MT4-MMP-deficient mouse strain representing an efficient tracking system for MT4-MMP/MMP-17 expression in vivo using beta-galactosidase. Genes Cells. 12 (9), 1091-1100 (2007).
  16. Leight, J. L., Alge, D. L., Maier, A. J., Anseth, K. S. Direct measurement of matrix metalloproteinase activity in 3D cellular microenvironments using a fluorogenic peptide substrate. Biomaterials. 34 (30), 7344-7352 (2013).
  17. Ma, W., Rogers, K., Zbar, B., Schmidt, L. Effects of different fixatives on β-galactosidase activity. Journal of Histochemistry & Cytochemistry. 50 (10), 1421-1424 (2002).
  18. Lojda, Z. Indigogenic methods for glycosidases. II. An improved method for beta-D-galactosidase and its application to localization studies of the enzymes in the intestine and in other tissues. Histochemie. 23 (3), 266-288 (1970).
  19. Trifonov, S., Yamashita, Y., Kase, M., Maruyama, M., Sugimoto, T. Overview and assessment of the histochemical methods and reagents for the detection of β-galactosidase activity in transgenic animals. Anat Sci Int. 91, 56-67 (2016).
  20. Sanchez-Ramos, J., et al. The X-gal Caution in Neural Transplantation Studies. Cell Transplantation. 9 (5), 657-667 (2000).
  21. Weiss, D. J., Liggitt, D., Clark, J. G. In situ histochemical detection of beta-galactosidase activity in lung: assessment of X-Gal reagent in distinguishing lacZ gene expression and endogenous beta-galactosidase activity. Hum Gene Ther. 8 (13), 1545-1554 (1997).
  22. Merkwitz, C., Blaschuk, O., Schulz, A., Ricken, A. M. Comments on Methods to Suppress Endogenous β-Galactosidase Activity in Mouse Tissues Expressing the LacZ Reporter Gene. The Journal of Histochemistry and Cytochemistry. 64 (10), 579-586 (2016).
  23. Buesa, R. J., Peshkov, M. V. Histology without xylene. Annals of Diagnostic Pathology. 13, 246-256 (2009).
  24. Richardson, D. S., Lichtman, J. W. Clarifying Tissue Clearing. Cell. 162 (2), 246-257 (2015).
  25. Kandyala, R., Raghavendra, S. P. C., Rajasekharan, S. T. Xylene: An overview of its health hazards and preventive measures. Journal of Oral and Maxillofacial Pathology. 14 (1), 1-5 (2010).
  26. Hinds, H. L. A Comparison of Three Xylene Substitutes. Laboratory Medicine. 17 (12), 752-755 (1986).
  27. Merkwitz, C., Blaschuk, O., Winkler, J., Schulz, A., Prömel, S., Ricken, A. M. Advantages and Limitations of Salmon-Gal/Tetrazolium Salt Histochemistry for the Detection of LacZ Reporter Gene Activity in Murine Epithelial Tissue. Journal of Histochemistry & Cytochemistry. 65 (4), 197-206 (2017).
  28. Levitsky, K. L., Toledo-Aral, J. J., López-Barneo, J., Villadiego, J. Direct confocal acquisition of fluorescence from X-gal staining on thick tissue sections. Scientific Reports. 3, 2937 (2013).
  29. Shen, X., Bao, W., Yu, W., Liang, R., Nguyen, B., Yu Liu, Y. An improved method with high sensitivity and low background in detecting low β-galactosidase expression in mouse embryos. PLoS One. 12 (5), (2017).
  30. Komatsu, Y., Kishigami, S., Mishina, Y. In situ Hybridization Methods for Mouse Whole Mounts and Tissue Sections with and Without Additional β-Galactosidase. Methods Mol Biol. 1092, 1-15 (2014).
  31. Jeong, Y., Epstein, D. J. Distinct regulators of Shh transcription in the floor plate and notochord indicate separate origins for these tissues in the mouse node. Development. 130 (16), 3891-3902 (2003).
  32. Eid, R., Koseki, H., Schughart, K. Analysis of LacZ reporter genes in transgenic embryos suggests the presence of several cis-acting regulatory elements in the murine Hoxb-6 gene. Developmental Dynamics. 196 (3), 205-216 (1993).
  33. Will, A. J., et al. Composition and dosage of a multipartite enhancer cluster control developmental expression of Ihh (Indian hedgehog). Nature Genetics. 49 (10), 1539-1545 (2017).
  34. Stanford, W. L., Cohn, J. B., Cordes, S. P. Gene-trap mutagenesis: past, present and beyond. Nature Reviews Genetics. 2 (10), 756-768 (2001).
  35. Ménoret, S., et al. lacZ transgenic rats tolerant for beta-galactosidase: recipients for gene transfer studies using lacZ as a reporter gene. Human Gene Therapy. 13 (11), 1383-1390 (2002).
  36. Takahashi, M., et al. Establishment of lacZ-transgenic rats: a tool for regenerative research in myocardium. Biochemical and Biophysical Research Communications. 305 (4), 904-908 (2003).
  37. Mozdziak, P. E., Borwornpinyo, S., McCoy, D. W., Petitte, J. N. Development of transgenic chickens expressing bacterial betagalactosidase. Developmental Dynamics. 226 (3), 439-445 (2003).
  38. Mozdziak, P. E., Wu, Q., Bradford, J. M., Pardue, S. L., Borwornpinyo, S., Giamario, C., Petitte, J. N. Identification of the lacZ insertion site and beta-galactosidase expression in transgenic chickens. Cell Tissue Research. 324 (1), 41-53 (2006).
  39. Hartley, K. O., Nutt, S. L., Amaya, E. Targeted gene expression in transgenic Xenopus using the binary Gal4-UAS system. Proceedings of the National Academy of Science U.S.A. 99, 1377-1382 (2002).
  40. Scheer, N., Campos-Ortega, J. A. Use of the Gal4-UAS technique for targeted gene expression in the zebrafish. Mechanisms of Development. 80 (2), 153-158 (1999).
  41. Brand, A. H., Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development. 118 (2), 401-415 (1993).
  42. Lee, B. Y., et al. Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell. 5 (2), 187-195 (2006).
  43. Morais, K. S., Guimarães, A. F. R., Ramos, D. A. R., Silva, F. P., de Oliveira, D. M. Long-term exposure to MST-312 leads to telomerase reverse transcriptase overexpression in MCF-7 breast cancer cells. Anti-Cancer Drugs. 28 (7), 750-756 (2017).
  44. Dimri, G. P., et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proceedings of the National Academy of Science U.S.A. 92 (20), 9363-9367 (1995).
check_url/es/57785?article_type=t

Play Video

Citar este artículo
Blanco, M. J., Learte, A. I., Marchena, M. A., Muñoz-Sáez, E., Cid, M. A., Rodríguez-Martín, I., Sánchez-Camacho, C. Tracing Gene Expression Through Detection of β-galactosidase Activity in Whole Mouse Embryos. J. Vis. Exp. (136), e57785, doi:10.3791/57785 (2018).

View Video