Синаптических пузырьков (SV) Велоспорт-это основной механизм межклеточные связи в нейрональных синапсах. Поглощение красителя FM и выпуска являются основным средством количественно опробование SV эндо – и экзоцитоз. Здесь мы сравниваем все методы стимуляции для привода FM1-43 Велоспорт на синапсы модели нервно-Джанкшен (NMJ) дрозофилы .
FM красители используются для изучения цикла синаптических пузырьков (SV). Эти зонды амфифильными есть гидрофильные головы и гидрофобных хвост, делая их водорастворимый с возможностью обратного въезда и выезда из мембраны липидных бислоев. Эти стириловых красителей относительно не флуоресцентные в водной среде, но вызывает вставку в наружный листок плазматической мембраны > 40 X увеличение флуоресценции. В нейрональных синапсах FM красители учитываются во время SV эндоцитоза, ставших предметом торговли, как внутри, так и между SV бассейны и выпущенные с SV экзоцитоз, обеспечивая мощный инструмент для визуализации Пресинаптический этапы синапсах. Основная генетических модель глутаматергические синапсов и функции — дрозофилы нервно-Джанкшен (NMJ), где FM красителя изображений широко используется для количественного определения SV динамика в широком диапазоне условий, мутант. В NMJ синаптических терминал легко доступны, с массивом красивых больших синаптической boutons идеально подходит для визуализации приложений. Здесь, мы сравним и контраст три способа стимулирования дрозофилы NMJ водить зависящих от деятельности FM1-43 краситель поглощения/выпуска: 1) Ванна применение высокого [K+] depolarize нервно-мышечных тканей, 2) всасывания электрода двигательного нерва стимуляция depolarize Пресинаптический нервных терминал и 3) целевых трансгенных выражение channelrhodopsin вариантов для света стимулирует, пространственного управления деполяризации. Каждый из этих методов имеет преимущества и недостатки для изучения генетической мутации воздействия на цикл SV на дрозофилы NMJ. Мы будем обсуждать эти преимущества и недостатки для оказания помощи при выборе стимуляции подхода, а также методологий, специфичные для каждой стратегии. Кроме флуоресцентный изображений, FM красители могут быть photoconverted электронно плотные сигналы визуализируется с помощью просвечивающей электронной микроскопии (ТЕА) для изучения механизмов цикла SV на ультраструктурные уровне. Мы предоставляем сравнения конфокальных и электронной микроскопии изображений из различных методов дрозофилы NMJ стимуляции, чтобы помочь при выборе будущих экспериментальных парадигм.
СИНАПС красиво характеризуется глутаматергические дрозофилы личиночной нервно-Джанкшен (NMJ) модель использовалась для изучения формирования синапсов и функции с широкий спектр генетических возмущений1. Мотонейрона терминал состоит из нескольких ветвей аксона, каждый с многими расширенного синаптической boutons. Эти емкие Варикоз (до 5 мкм в диаметре) содержат все синапсах механизма, включая единый глутаматергические синаптических пузырьков (СВС; ~ 40 Нм в диаметре) в цитозольной резерва и легко публикуемой бассейна2. Эти пузырьки док на пресинаптической мембраной плазмы фьюжн сайта активных зон (АЗС), где экзоцитоз опосредует выпуск нейромедиатора глутамата для транс-синаптической связи. Впоследствии СВС извлекаются из плазматической мембраны через поцелуй и побегите рециркуляции или Клатрин опосредованный эндоцитоз (CME) для повторного exo/эндоцитоза циклов. Дрозофилы NMJ легко доступны и хорошо подходит для изоляции и характеризующие SV цикла мутантов. Использование вперед генетических экранов, Роман мутации привели к выявлению новых генов критическое для SV цикла3. Кроме того обратный генетические подходы, начиная с уже известных генов привели к прояснению новых механизмов SV цикла через тщательное описание мутант Велоспорт фенотипов4. Дрозофилы NMJ почти идеально как экспериментальный синаптических подготовка для рассечения SV эндоцитоза и экзоцитоз механизмов через методы для оптически трек везикул Велоспорт в синапсах.
Широкий спектр флуоресцентные маркеры позволяют визуального отслеживания во время Велоспорт динамика пузырьков, но наиболее универсальным являются аналогами краситель FM, которые впервые синтезирован Мао, ф., и др. 5. структурно, FM красители содержат гидрофильные головы и липофильных хвост, подключенных через ароматическое кольцо, с центральным регионом, присвоении спектральных свойств. Эти стириловых красителей обратимо разделов в мембранах, не «триггер» между мембраны листовки и поэтому никогда не бесплатно в цитозоле и гораздо более флуоресцентные в мембранах, чем воды5. Реверсивные вставки липидного бислоя вызывает увеличение разницей флуоресценции6. В нейрональных синапсах Классический FM краска маркировки эксперименты состоят из купания синаптических подготовки с красителем во время расшатывания стимуляции для загрузки краситель через SV эндоцитоз. Внешние краситель затем смыл и SV цикла арестован в растворе кальция бесплатный звонок для изображения загружены синапсы7. Второй раунд стимуляции в бане бесплатно краска триггеров релиз FM через экзоцитоз, процесс, который может следовать путем измерения снижение интенсивности флуоресценции. SV населения из одного везикул в бассейны, содержащих сотни везикулы может быть количественно Мониторим6,7. FM красители были использованы для рассечения зависит от активности мобилизации функционально различных бассейнов SV и сравнить поцелуй и побегите против CME Велоспорт8,9. Этот метод был изменен для отдельно пробирного вызывали, спонтанной и миниатюрные синаптических цикла мероприятия (с весьма чувствительной оборудованием для обнаружения изменения очень маленькие флуоресценции и уменьшить Фотообесцвечивание)10. Анализов могут быть расширены до уровня ультраструктурных photoconverting флуоресцентные FM сигнала в электронно плотные этикетку для передачи электронной микроскопии11,12,13,14 .
Исторически купание синаптических препаратов в высокой концентрации калия (далее именуемые как «high [K+]») был методом выбора для расшатывания стимуляции заставить SV Велоспорт; Начиная от лягушки холинергических NMJ5, культивированный грызунов мозга Нейроны гиппокампа15, до16,модель дрозофилы глутаматергические NMJ17. Этот высокий [K+] подход прост, не требует специализированного оборудования и поэтому доступен для большинства лабораторий, но имеет ограничения для приложений и интерпретации данных. Гораздо более физиологически соответствующий метод заключается в использовании всасывания электрода электростимуляции нервов4,5,12. Этот подход диски действий потенциал распространения для прямой стимуляции Пресинаптический нерва терминала, и результаты можно непосредственно по сравнению с электрофизиологических анализов синапсах функции13,14, 15, но требует специализированного оборудования и технически гораздо более сложной. С появлением Оптогенетика использование channelrhodopsin нейронной стимуляции имеет дополнительные преимущества, включая контроль пространственно-временных канала выражения с использованием двоичной системы Gal4/Уан20. Этот подход является технически гораздо проще, чем всасывания электрод стимуляции и требует не более чем очень дешевые светодиодный источник света. Здесь, мы используем изображения FM1-43 (N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino)styryl) пиридиния дибромид) как сравнить и сопоставить эти три различных стимуляции методы на дрозофилы NMJ: простой средней [K+ ], сложных электрических и новой channelrhodopsin подходы.
Высокое [K+] физиологический деполяризующий стимуляция является на сегодняшний день самым простым из трех вариантов для зависящих от деятельности FM краситель Велоспорт, но вероятно наименее физиологических29. Этот простой метод depolarizes каждой доступной клетки тела жи?…
The authors have nothing to disclose.
Мы благодарим членов Broadie лаборатории за вклад в эту статью. Эта работа была поддержана низ R01s MH096832 и MH084989 к.б. и низ лектор стипендий F31 MH111144 для D.L.K.
SylGard 184 Silicone Elastomer Kit | Fisher Scientific | NC9644388 | To put on cover glass for dissections |
Microscope Cover Glass 22×22-1 | Fisherbrand | 12-542-B | To put SylGard on for dissections |
Aluminum Top Hot Plate Type 2200 | Thermolyne | HPA2235M | To cure the SylGard |
Plexi glass dissection chamber | N/A | N/A | Handmade |
Borosilicate Glass Capillaries | WPI | 1B100F-4 | To make suction and glue micropipettes |
Laser-Based Micropipette Puller | Sutter Instrument | P-2000 | To make suction and glue micropipettes |
Tygon E-3603 Laboratory Tubing | Component Supply Co. | TET-031A | For mouth and suction pipette |
P2 pipette tip | USA Scientific | 1111-3700 | For mouth pipette |
0.6-mL Eppendorf tube cap | Fisher Scientific | 05-408-120 | Used to put glue in for dissection |
Vetbond 3M | WPI | vetbond | Glue used for dissections |
Potassium Chloride | Fisher Scientific | P-217 | Forsaline |
Sodium Chloride | Millipore Sigma | S5886 | For saline |
Magnesium Chloride | Fisher Scientific | M35-500 | For saline |
Calcium Chloride Dihydrate | Millipore Sigma | C7902 | For saline |
Sucrose | Fisher Scientific | S5-3 | For saline |
HEPES | Millipore Sigma | H3375 | For saline |
HRP:Alexa Fluor 647 | Jackson ImmunoResearch | 123-605-021 | To label neuronal membranes |
Paintbrush | Winsor & Newton | 94376864793 | To manipulate the larvae |
Dumont Dumostar Tweezers #5 | WPI | 500233 | Used during dissection |
7 cm McPherson-Vannas Microscissors (blades 3 mm) | WPI | 14177 | Used during dissection |
FM1-43 | Fisher Scientific | T35356 | Fluorescent styryl dye |
Digital Timer | VWR | 62344-641 | For timing FM dye load/unload |
LSM 510 META laser-scanning confocal microscope | Zeiss | For imaging the fluorescent markers | |
Zen 2009 SP2 version 6.0 | Zeiss | Software for imaging on confocal | |
HeNe 633nm laser | Lasos | To excite HRP:647 during imaging | |
Argon 488nm laser | Lasos | To excite the FM dye during imaging | |
Micro-Forge | WPI | MF200 | To fire polish glass micropipettes |
20mL Syringe Slip Tip | BD | 301625 | To suck up the axon for electrical stimulation. |
Micro Manipulator (magnetic base) | Narishige | MMN-9 | To control the suction electrode for electrical stimulation |
Stimulator | Grass | S48 | To control the LED and electrical stimulation |
Zeiss Axioskop Microscope | Zeiss | Used during electrical stimulation. | |
40X Achroplan Water Immersion Objective | Zeiss | Used during electrical stimulation and confocal imaging | |
All-trans Retinal | Millipore Sigma | R2500 | Essential co-factor for ChR2 |
Zeiss Stemi Microscope with camera port | Zeiss | 2000-C | Used during channelrhodopsin stimulation |
LED 470nm | ThorLabs | M470L2 | Used for ChR activation |
T-Cube LED Driver | ThorLabs | LEDD1B | To control the LED |
LED Power Supply | Cincon Electronics Co. | TR15RA150 | To power the LED |
Optical Power and Energy Meter | ThorLabs | PM100D | To measure LED intensity |