Summary

高效生成粘附培养中 Hpsc 的胰腺-二叶多布蛋白 1+后后福格内胰腺祖细胞

Published: March 27, 2019
doi:

Summary

在这里, 我们提出了一个详细的协议, 以区分人类多能干细胞 (Hpsc) 到胰十二指肠蛋白 1+ (pdx1+) 细胞的产生的非群体类型单层生长的基础上, 胰腺谱系离解的单细胞。该方法适用于同源 hPSC-derived 衍生细胞的产生、遗传操作和筛选。

Abstract

人多能干细胞 (hPSC) 衍生胰腺细胞是再生医学中一种很有前途的细胞来源, 也是研究人类发育过程的平台。分步定向分化, 重述发育过程是产生胰腺细胞的主要方法之一, 包括胰十二指肠蛋白同源蛋白 1+ (pdx1+) 胰腺祖细胞。传统的协议在通过后不久就开始与小菌落进行分化。然而, 在菌落或聚集的状态下, 细胞容易发生异质性, 这可能会阻碍对 PDX1+细胞的分化。在这里, 我们提出了一个详细的协议, 以区分 Hpsc 到 PDX1+细胞。该方案由四个步骤组成, 通过播种离解的单细胞启动分化。在诱导 SOX17+确定内皮细胞后, 将两个原始肠道管标记 HNF1Β和 hnf4α表达, 并最终分化为 pdx1+细胞。本协议提供了简单的处理, 并可能提高和稳定一些 hPSC 线的分化效率, 以前发现, 这些线路不有效地分化为内皮谱系或 PDX1+细胞。

Introduction

胰腺主要由外分泌细胞和内分泌细胞组成, 其功能障碍或超载导致胰腺炎、糖尿病和胰腺癌等多种疾病。为了阐明胰腺病的病因, 有必要对胰腺细胞的发育过程和功能进行分析。此外, 建立细胞组织补充治疗需要稳定的细胞供应和强大的质量。人类多能干细胞 (hpsc) 衍生的胰腺细胞是一个很有前途的细胞来源, 这是一个很有前途的细胞源, 和分化协议的胰腺细胞已深入研究1,2, 3, 4. 我的工作是什么?胰腺β细胞体外生成的新进展模仿了成人人β细胞的生成, 这些细胞在糖尿病模型小鼠2,3植入时显示出治疗效果。此外, 对健康和1型糖尿病患者捐献者诱导多能干细胞 (Ipsc) 产生的β细胞的分析显示, 包括在压力下 5, 没有功能差异.此外, 在与 6,7 患者相同的地点, 患者衍生的 ipsc 或 hpsc 存在基因突变, 导致胰腺细胞的疾病表型部分被复制。

为了从 Hpsc 中产生胰腺细胞, 采用了分步定向分化, 重述了发育过程。胰腺来源于早期胚胎的内皮层, 表达了性别决定性区域 y-盒 17 (SOX17) 和叉头盒 A2 (FOXA2)8。在小鼠研究的基础上, 内皮层形成原始的肠道管, 其特征是肝细胞核因子 1-beta (Hnf1β) 和肝细胞核因子 4-alpha (hnf4α) 的表达。原始的肠道管伸长并发展成呼吸系统、消化道和器官。伸长后, 后前部区成为推定胰腺区, 其特征是转录因子胰腺/十二指肠蛋白 1 (pdx1)8,9,10的表达。pdx1+肠道管的背侧和腹侧部分变厚形成胰芽, 其特征是胰腺转录因子1亚基α (ptf1a) 和 nk6 同源 box 1 (nkx6.1)8,11的共表达。这一表达标志着胰腺器官发生的形态开始。胰腺内真皮细胞是胰芽的组成部分, 形成一个分支管状的上皮结构网络 12,并最终分化为外分泌和内分泌细胞, 包括胰岛素分泌β细胞和葡萄糖分泌的α细胞。pdx1 的表达首先在推定胰腺区检测, 然后在整个胰腺发育过程中观察到, 并显示出β-和细胞91314 的定位。虽然 Pdx1 + 细胞区不表达 Ptf1aNkx6.1 分化为胃狭窄, 十二指肠, 肝外胆管和一些肠道细胞在发育的中后期阶段在小鼠 9, pdx1+ 细胞在人类早期发育阶段被认为是胰腺的祖细胞。

在这里, 我们提出了一个详细的协议, 以区分 Hpsc 到 PDX1+细胞的胰腺谱系的生成。该方案通过播种离解的单细胞151617来引发分化。一般情况下, 未分化的 Hpsc 在悬浮液或粘附中保持为菌落或细胞集体。因此, 大多数协议在传代后不久就开始分化。然而, 在菌落或聚集体的状态下, 细胞容易出现空间和转录异质性181920、21、22, 这可能会阻碍向最终内皮的第一步分化, 然后是低效率的分化到 PDX1+细胞。本协议可以提供易于操作, 以提高和稳定一些 hPSC 线的分化效率, 这些线路以前被发现对内皮谱系和 PDX1+细胞23的分化效率很低,24,25岁

Protocol

京都大学医学系和医学研究生院伦理委员会批准了使用 Hpsc 的实验。 1. 材料的制备 请注意:准备所有培养基和试剂, 以便在无菌环境中进行细胞培养。使用前将基础培养基加热至室温 (RT)。在 RT 使用培养基, 在6小时内使用. 试剂的详情列于物料表。 区别 (图 1 a) 阶段1A…

Representative Results

传播的 hpsc (585a129,30) 被浓缩并形成一个适合分化的均匀单层 (图 1b)。未分化的 Hpsc (第0阶段) 在低细胞密度 (1-1. 1.5 x10 5 细胞 2) 时分离并重新播种为单细胞.在1小时内, 细胞连接到板上, 开始显示突起。在第一天, 细胞增殖, 分布良好, 覆盖80% 至90% 的表面积。在第一阶段 b, 由于死细胞, 介质出现多云。去除死细胞对于…

Discussion

PDX1+单元的生成由多个步骤组成;因此, 在适当的时间治疗细胞是至关重要的。在这些步骤中, 最终内皮的诱导效率在很大程度上影响最终的诱导效率, 可能是通过其他污染谱系细胞 (即中胚层和外胚层) 的干扰, 这些细胞可能会增殖和分泌一些因素, 而这些因素会产生。破坏特定的分化。如果 SOX17+细胞的比例在第4天 (第1 b 阶段) 低于 80%, 则对 pdx1+细胞的有效诱导可能会受到损?…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

这项工作得到了日本科学促进会 (JSPS) 通过科学研究 (C) (JPS KAKENHI Grant Number15K09385 和 18K08510) 至 t. t. 和 Jps 研究研究员补助金 (JPS KAKENGRANT 编号) 的资助。17J07622) 至 a. k. 和日本医学研究与发展机构 (AMED), 通过向 k. o 提供 “研究所细胞研究核心中心、再生医学实现研究中心网络” 的研究赠款。作者感谢彼得·卡拉吉安尼斯博士阅读了手稿。

Materials

3-Keto-N-aminoethyl-N′-aminocaproyldihydrocinnamoyl cyclopamine Toronto Research Chemicals K171000 CYC
4-[(E)-2-(5,6,7,8-Tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)-1-propenyl]-benzoic acid Santa Cruz Biotechnology SC-203303 TTNPB
50 mL Conical Sterile Polypropylene Centrifuge Tubes Thermo Fisher Scientific 339652
Anti-CDX2 antibody [EPR2764Y] Abcam Ab76541 Anti-CDX2, × 1/1000 dilution
B-27 Supplement (50 ×) Thermo Fisher Scientific 17504-044 Serum-free supplement
BD FACSAria II Cell Sorter BD Biosciences For flow cytometry
Biomedical freezer SANYO MDF-U538 For -30 °C storing
Cell Counting Slides for TC10/TC20 Cell Counter, Dual-Chamber BIO-RAD 1450011 Counting slide glass
CELL CULTURE MULTIWELL PLATE, 6 WELL, PS, CLEAR Greiner bio-one 657165 For differentiation culture/6-well plate
Centrifuge TOMY AX-310 For cell culturing
Centrifuge TOMY MX-305 For RT-qPCR
CHIR99021 Axon Medchem Axon 1386
CLEAN BENCH SHOWA KAGAKU  S-1601PRV Clean bench
Corning CellBIND 6-well plate Corning 3335 For feeder-free culture of hPSCs/6-well plate
Corning Matrigel Basement Membrane Matrix Growth Factor Reduced Corning 354230 Basement membrane matrix
Corning Synthemax II-SC Substrate Corning 3535 For feeder-free culture of hPSCs/synthetic surface material for hPSCs
Cryostat Leica Leica CM1510 S For immunostaining of aggregates.
Cytofix/Cytoperm Kit Becton Dickinson 554714 Perm/Wash buffer is  Permeabilization/Wash buffer. Cytofix/Cytoperm buffer is fixation and permeabilization buffer.
Dako pen Dako S2002 For immunostaining of aggregates
dNTP mix (10 mM) Thermo Fisher Scientific 18427-088 For RT-qPCR
Donkey anti-Goat IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 488 Thermo Fisher Scientific A11055 Secondary antibody, × 1/500 dilution
Donkey anti-Mouse IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor 546 Thermo Fisher Scientific A10036 Secondary antibody, × 1/500 dilution
Donkey anti-Rabbit IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor 546 Thermo Fisher Scientific A10040 Secondary antibody, × 1/500 dilution
Donkey Serum Merck Millipore S30 Donkey serum
D-PBS(-) without Ca or Mg Nacalai tesque 14249-95 DPBS
Essential 8 Medium Thermo Fisher Scientific A1517001 For feeder-free culture of hPSCs/hPSC maintenance medium
Falcon 5mL Round Bottom Polystyrene Test Tube, with Cell Strainer Snap Cap Corning 352235 5 mL round bottom polystyrene tube with cell strainer
Filter Tip, 1000 µL Watoson 124-1000S Use together with pipettes
Filter Tip, 20 µL Watoson 124-P20S Use together with pipettes
Filter Tip, 200 µL Watoson 124-P200S Use together with pipettes
Fluorescence Microscope Keyence BZ-X700 For immunostaining
Forma Steri-Cycle CO2 incubator Thermo Fisher Scientific 370A Incubator
HNF-1β Antibody (C-20) Santa Cruz Biotechnology sc-7411 Anti-HNF1β, × 1/200 dilution
HNF-4α Antibody (H-171) Santa Cruz Biotechnology sc-8987 Anti-HNF4α, × 1/200 dilution
Hoechst 33342 Thermo Fisher Scientific H3570 For nucleus staining, × 1/200 dilution
Human Pancreas Total RNA Ambion AM7954 For RT-qPCR
Human PDX-1/IPF1 Antibody R&D Systems AF2419 Anti-PDX1, goat IgG, × 1/200 dilution
Human SOX17 Antibody R&D Systems AF1924 Anti-SOX17, × 1/200 dilution
Improved MEM Zinc Option medium Thermo Fisher Scientific 10373-017 iMEM
Incubation chamber Cosmo Bio 10DO For immunostaining of aggregates
Latex Examination Gloves Adachi
MAS coated slide glass Matsunami Glass 83-1881 For immunostaining of aggregates
MicroAmp Fast 96-well Reaction Plate Applied Biosystems/Thermo Fisher Scientific 4346907 For RT-qPCR
Microscope Olympus CKX41N-31PHP For cell culturing
Microtube Watoson 131-515CS
Monoclonal Anti-α-Fetoprotein SIGMA A8452 Anti-AFP, × 1/200 dilution
Nanodeop 8000 Thermo Fisher Scientific For RT-qPCR
Oligo dT FASMAC Custom made Oligo  For RT-qPCR of sequence is "TTTTTTTTTTTTTTTTTTTT"
Paraformaldehyde, powder Nacalai tesque 26126-54 PFA, fixative, diluted in DPBS
Pharmaceutical refrigerator SANYO MPR-514 For 4 °C storing
PIPETMAN P  GILSON Pipette
Recombinant Human KGF/FGF-7 R&D Systems 251-KG KGF
Recombinant Human Noggin PeproTech 120-10C NOGGIN
Recombinant Human/Mouse/Rat Activin A R&D Systems 338-AC Activin A
ReverTra Ace (100 U/μL) TOYOBO TRT-101 For RT-qPCR
Rnase-Free Dnase Set (50) QIAGEN 79254 For RT-qPCR
Rneasy Mini Kit QIAGEN 74104 For RT-qPCR
RPMI 1640 with L-Gln Nacalai tesque 30264-85 RPMI 1640
Sealing Film for Real Time Takara NJ500 For RT-qPCR
Serological pipettes 10 mL Costar/Corning 4488 For cell culturing
Serological pipettes 25 mL Costar/Corning 4489 For cell culturing
Serological pipettes 5 mL Costar/Corning 4487 For cell culturing
Sox2 (D6D9) XP Rabbit mAb Cell signaling 3579S Anti-SOX2, × 1/200 dilution
StepOnePlus Applied Biosystems/Thermo Fisher Scientific For RT-qPCR
Sucrose Nacalai tesque 30406-25 For immunostaining of aggregates
TB Green
Premix Ex Taq II 
Takara RR820B For RT-qPCR
TC20 Automated Cell Counter BIO-RAD 1450101J1 Automatic cell counter
Tissue-Tek OCT compound 4583  Sakura Finetechnical 4583 For immunostaining of aggregates
Tissue-Tek Cryomold Molds/Adapters Sakura Finetechnical 4566 For immunostaining of aggregates
Triton X-100 Nacalai tesque 35501-15
Trypan Blue BIO-RAD 1450021
Ultracold freezer SANYO MDF-U33V For -80 °C storing
UltraPure 0.5M EDTA, pH 8.0 Thermo Fisher Scientific 15575-038 Dilute with DPBS to prepare 0.5 mM EDTA
Veriti Thermal Cycler Applied Biosystems/Thermo Fisher Scientific For RT-qPCR
Y-27632 Wako 251-00514

Referencias

  1. D’Amour, K. A., et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nature Biotechnology. 24 (11), 1392-1401 (2006).
  2. Pagliuca, F. W., et al. Generation of functional human pancreatic beta cells in vitro. Cell. 159 (2), 428-439 (2014).
  3. Rezania, A., et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nature Biotechnology. 32 (11), 1121-1133 (2014).
  4. Kondo, Y., Toyoda, T., Inagaki, N., Osafune, K. iPSC technology-based regenerative therapy for diabetes. Journal of Diabetes Investigation. 9 (2), 234-243 (2017).
  5. Millman, J. R., et al. Generation of stem cell-derived beta-cells from patients with type 1 diabetes. Nature Communications. 7, 11463 (2016).
  6. Zeng, H., et al. An Isogenic Human ESC Platform for Functional Evaluation of Genome-wide-Association-Study-Identified Diabetes Genes and Drug Discovery. Cell Stem Cell. 19 (3), 326-340 (2016).
  7. Hosokawa, Y., et al. Insulin-producing cells derived from ‘induced pluripotent stem cells’ of patients with fulminant type 1 diabetes: Vulnerability to cytokine insults and increased expression of apoptosis-related genes. Journal of Diabetes Investigation. , (2017).
  8. Jennings, R. E., et al. Development of the human pancreas from foregut to endocrine commitment. Diabetes. 62 (10), 3514-3522 (2013).
  9. Jorgensen, M. C., et al. An illustrated review of early pancreas development in the mouse. Endocrine Reviews. 28 (6), 685-705 (2007).
  10. Jensen, J. Gene regulatory factors in pancreatic development. Developmental Dynamics. 229 (1), 176-200 (2004).
  11. Hald, J., et al. Generation and characterization of Ptf1a antiserum and localization of Ptf1a in relation to Nkx6.1 and Pdx1 during the earliest stages of mouse pancreas development. Journal of Histochemistry and Cytochemistry. 56 (6), 587-595 (2008).
  12. Villasenor, A., Chong, D. C., Henkemeyer, M., Cleaver, O. Epithelial dynamics of pancreatic branching morphogenesis. Development. 137 (24), 4295-4305 (2010).
  13. Serup, P., et al. The homeodomain protein IPF-1/STF-1 is expressed in a subset of islet cells and promotes rat insulin 1 gene expression dependent on an intact E1 helix-loop-helix factor binding site. Biochemical Journal. 310 (Pt 3), 997-1003 (1995).
  14. Riedel, M. J., et al. Immunohistochemical characterisation of cells co-producing insulin and glucagon in the developing human pancreas. Diabetologia. 55 (2), 372-381 (2012).
  15. Mae, S. I., et al. Monitoring and robust induction of nephrogenic intermediate mesoderm from human pluripotent stem cells. Nature Communications. 4, 1367 (2013).
  16. Toyoda, T., et al. Cell aggregation optimizes the differentiation of human ESCs and iPSCs into pancreatic bud-like progenitor cells. Stem Cell Research. 14 (2), 185-197 (2015).
  17. Toyoda, T., et al. Rho-Associated Kinases and Non-muscle Myosin IIs Inhibit the Differentiation of Human iPSCs to Pancreatic Endoderm. Stem Cell Reports. 9 (2), 419-428 (2017).
  18. Chen, K. G., Mallon, B. S., McKay, R. D., Robey, P. G. Human pluripotent stem cell culture: considerations for maintenance, expansion, and therapeutics. Cell Stem Cell. 14 (1), 13-26 (2014).
  19. Bauwens, C. L., et al. Control of human embryonic stem cell colony and aggregate size heterogeneity influences differentiation trajectories. Stem Cells. 26 (9), 2300-2310 (2008).
  20. Nguyen, Q. H., et al. Single-cell RNA-seq of human induced pluripotent stem cells reveals cellular heterogeneity and cell state transitions between subpopulations. Genome Research. 28 (7), 1053-1066 (2018).
  21. Narsinh, K. H., et al. Single cell transcriptional profiling reveals heterogeneity of human induced pluripotent stem cells. Journal of Clinical Investigation. 121 (3), 1217-1221 (2011).
  22. Rosowski, K. A., Mertz, A. F., Norcross, S., Dufresne, E. R., Horsley, V. Edges of human embryonic stem cell colonies display distinct mechanical properties and differentiation potential. Scientific Reports. 5, 14218 (2015).
  23. Torres-Padilla, M. E., Chambers, I. Transcription factor heterogeneity in pluripotent stem cells: a stochastic advantage. Development. 141 (11), 2173-2181 (2014).
  24. Cahan, P., Daley, G. Q. Origins and implications of pluripotent stem cell variability and heterogeneity. Nature Reviews Molecular and Cell Biology. 14 (6), 357-368 (2013).
  25. Chetty, S., et al. A simple tool to improve pluripotent stem cell differentiation. Nature Methods. 10 (6), 553-556 (2013).
  26. Kimura, A., et al. Small molecule AT7867 proliferates PDX1-expressing pancreatic progenitor cells derived from human pluripotent stem cells. Stem Cell Research. 24, 61-68 (2017).
  27. Bhattacharya, S., et al. High efficiency differentiation of human pluripotent stem cells to cardiomyocytes and characterization by flow cytometry. Journal of Visualized Experiments. (91), e52010 (2014).
  28. Honvo-Houeto, E., Truchet, S. Indirect Immunofluorescence on Frozen Sections of Mouse Mammary Gland. Journal of Visualized Experiments. (106), (2015).
  29. Okita, K., et al. A more efficient method to generate integration-free human iPS cells. Nature Methods. 8 (5), 409-412 (2011).
  30. Kajiwara, M., et al. Donor-dependent variations in hepatic differentiation from human-induced pluripotent stem cells. Proceedings of the National Academy of Science U S A. 109 (31), 12538-12543 (2012).
  31. Kikuchi, T., et al. Human iPS cell-derived dopaminergic neurons function in a primate Parkinson’s disease model. Nature. 548 (7669), 592-596 (2017).
  32. Suemori, H., et al. Efficient establishment of human embryonic stem cell lines and long-term maintenance with stable karyotype by enzymatic bulk passage. Biochemical and Biophysical Research Communication. 345 (3), 926-932 (2006).
  33. Gage, B. K., Webber, T. D., Kieffer, T. J. Initial cell seeding density influences pancreatic endocrine development during in vitro differentiation of human embryonic stem cells. PLoS One. 8 (12), e82076 (2013).
  34. Nostro, M. C., et al. Efficient generation of NKX6-1+ pancreatic progenitors from multiple human pluripotent stem cell lines. Stem Cell Reports. 4 (4), 591-604 (2015).
  35. Jonsson, J., Carlsson, L., Edlund, T., Edlund, H. Insulin-promoter-factor 1 is required for pancreas development in mice. Nature. 371 (6498), 606-609 (1994).
  36. Kelly, O. G., et al. Cell-surface markers for the isolation of pancreatic cell types derived from human embryonic stem cells. Nature Biotechnology. 29 (8), 750-756 (2011).
  37. Hohwieler, M., et al. Human pluripotent stem cell-derived acinar/ductal organoids generate human pancreas upon orthotopic transplantation and allow disease modelling. Gut. 66 (3), 473-486 (2017).
  38. Takeuchi, H., Nakatsuji, N., Suemori, H. Endodermal differentiation of human pluripotent stem cells to insulin-producing cells in 3D culture. Scientific Reports. 4, 4488 (2014).

Play Video

Citar este artículo
Toyoda, T., Kimura, A., Tanaka, H., Osafune, K. Efficient Generation of Pancreas/Duodenum Homeobox Protein 1+ Posterior Foregut/Pancreatic Progenitors from hPSCs in Adhesion Cultures. J. Vis. Exp. (145), e57641, doi:10.3791/57641 (2019).

View Video