Это сообщение описывает методологий для изоляции и культуре альвеолярных макрофагов от людей и мышиных моделях для экспериментальных целей.
Альвеолярные макрофаги являются безнадежно дифференцированной, легких резидентов макрофаги дородовой происхождения. Альвеолярные макрофаги являются уникальными в их долгой жизни и их важную роль в разработке легких и функции, а также их локализованные легких ответов на инфекции и воспаления. На сегодняшний день, существует не единый метод для идентификации, изоляции и обработки альвеолярных макрофагов от людей и мышей. Такой метод необходим для исследования на эти важные врожденные иммунные клетки в различных экспериментальных условиях. Метод, описанный здесь, который может быть легко принят любой лаборатории, это упрощенный подход для уборки альвеолярных макрофагов с Бронхоальвеолярный лаваж жидкости или из легочной ткани и поддержание их в пробирке. Потому что альвеолярные макрофаги главным образом происходят как адэрентных клеток в альвеолы, этот метод посвящен выбить их до сбора урожая и идентификации. Легких является весьма васкуляризированной органом, и различные типы клеток миелоидного и лимфоидных происхождения населяют, взаимодействуют и находятся под влиянием легкого микроокружения. С помощью набора поверхностных маркеров, в описанный здесь, исследователи могут легко и однозначно отличить от других лейкоцитов альвеолярных макрофагов и очищают их вниз по течению приложений. Здесь разработанный метод культуры поддерживает оба человека и мыши альвеолярных макрофагов в пробирки роста и совместим с клеточной и молекулярной исследований.
Микроокружения легких является уникально сложной экосистемы с каналом разработки воздуха и сосудистую. Вдыхаемый воздух проходит через трахею и многочисленные филиалы бронхов и бронхиол до достижения альвеолы, где происходит обмен газа крови воздух. Из-за прямое взаимодействие с атмосферой дыхательную поверхность требует защиты от потенциально вредного воздействия частиц и загрязнителей. Количество физических, химических и иммунологических барьеров защитить легкй. В частности развертывания фагоцитов на дыхательную поверхность обслуживает систему важной первой линии обороны. Альвеолярных макрофагов (AMs) являются одним из видов легких резидентов фагоцитов, и они составляют подавляющее большинство легких макрофагов бассейн. Как их названия, AMs преимущественно локализуются в просвете альвеол и происходят как сидячие клетки, которые постоянно образца окружающей атмосферы и общаться с альвеолярный эпителий1. В стационарном состоянии легких более 95% фагоцитов в альвеолярной пространстве являются AMs2, состав которых может измениться из-за воспаления, инфекции или хронического воздействия загрязнителей.
АПП участвовать в широком диапазоне функций, которые могут быть локальными для легких и/или имеющим системное значение. Например AMs имеют важное значение в развитии и оптимального функционирования легких; иммунной наблюдения; Распродажа сотовой мусора, вторгаясь патогенов, и вдыхании частиц3,4,5,6,7. Целевые истощение AMs известно повредить Распродажа респираторных вирусов и бактерий в4,8. Помимо их роли как фагоцитов и первой линии защитников легочной гомеостаза, AMs известны функционировать как антиген представляющих клеток в вызывая T клетки иммунитета9, потенцирования эффективность интраназальная вакцина10 и влияние на легких ограничено аутоиммунные заболевания после трансплантации легких11,12. Дефицит в AM функции были связаны с легочных альвеол proteinosis (PAP), состояние в результате генетической мутации, злокачественности или инфекции, что ухудшает Распродажа легочной ПАВ13,14. Трансплантация AMs сейчас изучается как терапевтический подход для лечения Пап 15,16.
АПП, как известно, происходят во время эмбриогенеза и сохраняются в легких на протяжении всей жизни без будучи заменена циркулирующих лейкоцитов2,17. Хотя, AM оборот не обнаруживается в гомеостатических легких, различные уровни оборота утра были зарегистрированы в некоторых клинических условиях, включая инфекции гриппа вирус4, myeloablative облучения18, подверженности эндотоксинов 19и20старости. АПП верил самостоятельного возобновить через низкосортных распространения17,21, но некоторые недавние исследования утверждают, что моноциты может породить населением внутрисосудистого легких макрофаги22,23 под экспериментальных условиях, но функциональность этих новообращенных легочной макрофагов еще должен быть определен в легочных заболеваний. Кроме того понимание порог стимул в контексте AM активации является потенциально интересный район, как легких пытается сохранить равновесие между воспалительных сигналов и иммунорегуляторное машины.
Физиологические и патологические изменения, которые приводят к потере иммунной регуляции имеют важное значение для оценки в различных клинических параметров (например, респираторные инфекции, заболевания легких, воспалительных и фиброзных легочных заболеваний). Тем не менее AMs все чаще признаются в качестве показателей или даже детерминанты здоровья легких11,24. В настоящее время есть нет единых протоколов для сбора урожая, характеризующие, и/или поддержание AMs от людей и доклинические мышиных моделях. Отсутствие консенсуса по утра прекурсоров и фенотипы, а подробная методология была основным камнем преткновения в расшифровке роль(и) AM в легких здоровья и болезни. Следующий протокол предлагает окончательное определение, изоляции и в пробирке культуры стратегию, которая будет значительно глубокого понимания поведения AM и облегчить AM-целенаправленных диагностических и терапевтических исследований.
АПП являются долгоживущие легких резидентов макрофаги, заполняющих легких, начиная с рождения и Несокрушимая над всей жизни26. Их роль в физиологии легких7 и патологии12 и их потенциал для прогнозирования легочной аутоиммунитета24 были…
The authors have nothing to disclose.
Мы благодарим Клэр Прендергаст за помощь с редактирования рукопись. DKN поддерживается путем исследования Грант (#2095) Фонда Флинн и ТМ поддерживается за счет субсидий из Национального института здравоохранения (R01HL056643 и R01HL092514). DKN разработали методы, Дизайн исследования и написал рукопись; ОМ, помогал с исследования на животных и клинические образцы закупок; SB, помогал с потоком гранулярных анализа и сортировки клеток; TM руководил исследования и обзор рукопись.
Non-enzymatic cell dissociating solution | Millipore-Sigma | C5789 | |
Puralube Vet Ointment | Dechra | 620300 | |
22G Catheter | Terumo Medical Products | SR-OX2225CA | |
4-0 Non-absorbable silk braided suture | Kent Scientific | SUT-15-2 | |
Dulbecco’s phosphate buffered saline | Corning | 21-031-CM | |
Mouse Fc block | BD Biosciences | 553142 | |
Lysis buffer (PureLink RNA Kit) | Thermo Fisher Scientific | 12183018A | |
b-Mercaptoethanol | Millipore-Sigma | M6250 | |
FACSAria II cell sorter | BD Biosciences | 644832 | |
Ketamine (Ketathesia) | Henry Schein | 56344 | |
Xylazine (AnaSed) | Akorn | 139-236 | |
RPMI 1640 | Corning | 10-040-CM | |
DMEM | Corning | 10-017-CM | |
Liberase TL | Millipore-Sigma | 5401020001 | |
DNase I | Millipore-Sigma | AMPD1-1KT | |
100μm cell strainer | Corning | 352360 | |
Human Fc block | BD Biosciences | 564220 | |
EDTA | Corning | 46-034-CI | |
Countess II Automated Cell Counter | Thermo Fisher Scientific | AMQAX1000 | |
Trypan Blue Solution | Thermo Fisher Scientific | 15250061 | |
HEPES | Corning | 25-060-CI | |
Fetal Bovine Serum | Atlanta Biologicals | S11150H | |
L-929 cell line | American Type Culture Collection | ATCC, CCL-1 | |
Penicillin/Streptomycin | Corning | 30-002-CI | |
Sodium Pyruvate | Corning | 25-000-CI | |
T25 Tissue culture flask | Thermo Fisher Scientific | 156367 | |
60 mm culture dish | Millipore-Sigma | CLS3261 | |
15 mL Conical tube | Corning | 352097 | |
50 mL Conical tube | Corning | 352098 | |
LSRFortessa cell analyzer | BD Biosciences | 657669 | |
FlowJo | FlowJo | v10.4 | Analysis Software |
Anti-CD45 (Mouse) | Biolegend | 147709 | Clone I3/2.3, FITC conjugated |
Anti-CD11b (Mouse) | Biolegend | 101228 | Clone M1/70, PerCP/Cy5.5 conjugated |
Anti-CD11c (Mouse) | BD Biosciences | 565452 | Clone N418, BV 421 conjugated |
Anti-I-Ab (Mouse) | Biolegend | 116420 | Clone AF6-120.1, PE/Cy7 conjugated |
Anti-Siglec-F (Mouse) | BD Biosciences | 562757 | Clone E50-2440, PE-CF594 conjugated |
Anti-Siglec-H (Mouse) | Biolegend | 129605 | Clone 551, PE conjugated |
Anti-F4/80 (Mouse) | Biolegend | 123118 | Clone BM8, APC/Cy7 conjugated |
Anti-Ly-6C (Mouse) | Biolegend | 128035 | Clone HK1.4, BV605 conjugated |
Anti-CD64 (Mouse) | Biolegend | 139311 | Clone X54-5/7.1, BV711 conjugated |
Anti-CD24 (Mouse) | BD Biosciences | 563115 | Clone M1/69, BV510 conjugated |
Anti-CD103 (Mouse) | BD Biosciences | 745305 | Clone OX-62, BV650 conjugated |
Anti-CD317 (Mouse) | Biolegend | 127015 | Clone 927, APC conjugated |
Anti-CXCR1 (Mouse) | Biolegend | 149029 | Clone SA011F11, BV785 conjugated |
Anti-CD45 (Human) | Biolegend | 304017 | Clone HI30, AF488 conjugated |
Anti-CD11b (Human) | Biolegend | 101216 | Clone M1/70, PE/Cy7 conjugated |
Anti-HLA-DR (Human) | Biolegend | 307618 | Clone L243, APC/Cy7 conjugated |
Anti-CD169 (Human) | Biolegend | 346008 | Clone 7-239, APC conjugated |
Anti-CD206 (Human) | Biolegend | 321106 | Clone 15-2, PE conjugated |
Anti-CD163 (Human) | Biolegend | 333612 | Clone GHI/61, BV421 conjugated |