Aqui, apresentamos um protocolo para descrever um modelo de recuperação simples extracorpórea sem transfusão ou inotrópicos em um rato. Este modelo permite o estudo de longo prazo várias sequelas de órgão de bypass cardiopulmonar.
Extracorpórea (CEC) é indispensável em cirurgia cardiovascular. Apesar da dramático refinamento de técnica de CEC e dispositivos, órgãos várias complicações relacionadas à prolongada CPB ainda comprometer o resultado de cirurgias cardiovasculares e podem piorar mortalidade e morbidade pós-operatória. Modelos animais, recapitulando o uso clínico do CPB permitem o esclarecimento dos processos fisiopatológicos que ocorrem durante a CEC e facilitam estudos pré-clínicos para desenvolver estratégias de proteção contra estas complicações. Modelos do rato CPB são vantajosos por causa da sua maior relação custo-eficácia, processos experimentais convenientes, abundantes métodos de ensaio para a genética ou níveis de proteína e consistência genética. Eles podem ser usados para investigar a ativação do sistema imunológico e síntese de cytokines proinflammatory, ativação de elogio e produção de radicais livres de oxigênio. Os modelos do rato foram refinados e gradualmente tomaram o lugar dos modelos de animal-grande. Aqui, descrevemos um modelo simples de CEC sem transfusão e/ou inotrópicos em um rato. Esse modelo de recuperação permite que o estudo de longo prazo múltiplas sequelas de órgão do CPB.
Em 1953, o Dr. John H. Gibbon Jr realizou com sucesso a primeira cirurgia cardíaca usando CPB1, e posteriormente tornou-se uma modalidade essencial em cirurgia cardiovascular. Enquanto as técnicas e os dispositivos foram dramaticamente refinados, órgãos várias complicações relacionadas à CPB ainda comprometem o resultado de cirurgias cardiovasculares e podem afetar de morbidade e mortalidade pós-operatória2. Danos nos órgãos relacionados ao CPB é causado pela ativação do sistema imunológico e síntese de cytokines proinflammatory, ativação de elogio e produção de radicais livres de oxigênio2. Sua fisiopatologia, no entanto, não foi totalmente elucidada.
Modelos animais, recapitulando o uso clínico do CPB permitem o esclarecimento dos processos fisiopatológicos durante e após a CEC; Isto pode facilitar estudos pré-clínicos no desenvolvimento de estratégias para evitar estas complicações. Desde Popovic et al. relatada pela primeira vez um modelo do rato CPB em 19673, rato CPB modelos foram refinados e gradualmente tomaram o lugar dos modelos de animal grande, devido ao maior custo-efetividade, processos experimentais convenientes e uma infinidade de métodos de teste genético e níveis de proteína. Além disso, ratos puras podem ser geneticamente idênticos, reduzindo possíveis enviesamentos biológicos.
Fabre et al. primeiro estabeleceu um modelo de recuperação que permitiu o estudo de longo prazo várias sequelas de órgão de CPB4. As vantagens deste modelo de sobrevivência simples são a flexibilidade (CPB fluxo e duração), condições vitais estáveis e reprodutibilidade em inflamações sistêmicas. Modelos do rato CPB tornaram-se cruciais para a investigação de estratégias terapêuticas que visam prevenir lesões de vários órgãos durante a CEC5, e recentemente foram desenvolvidos vários modelos para simular as situações clínicas durante a CEC. De Lange et al. desenvolveu um modelo de parada cardíaca, que pode ser usado para caracterizar as respostas enzimáticas, genéticas e histológicas relacionadas com lesão miocárdica7. Peters et al. arranjado o infarto do miocárdio e reperfusão controlada usando um modelo em miniatura do CPB para analisar a disfunção do coração através da isquemia focal e reperfusão lesão8. Jungwirth et al. primeiro estabeleceu um modelo de fundo circulatória hipotérmica (DHCA), que pode elucidar a lesão de isquemia e reperfusão global por DHCA e suporta potencial neuroprotetor estratégias6. Estudos utilizando DHCA investigam a influência da hipotermia, reperfusão, e/ou acionadas por hemólise sinalização eventos9. Hipotermia profunda pode afetar a ativação e inativação de várias enzimas e vias e os mecanismos permanecem desconhecidas10. Por outro lado, modelos de parada cardíaca ou modelos de isquemia do coração devem ser usados para investigar a isquemia e reperfusão lesão de coração. Esses vários modelos CPB rato que recapitular altamente humano CEC podem revelar processos patológicos relacionados à CEC e ajudar a atenuar as complicações relacionadas à CEC.
Este protocolo demonstra um modelo simples de CEC sem transfusão ou inotrópicos em um rato. Este modelo permite o estudo de longo prazo várias sequelas de órgão do CPB.
Neste modelo de CEC de rato, os soro e pulmão níveis de expressão de citocinas inflamatórias e HMGB-1, um fator de transcrição chave regulamenta as respostas inflamatórias, aumentaram dramaticamente após a CEC. Estudos clínicos anteriores mostraram que a secreção de soro de nível HMGB-1 é elevada em pacientes submetidos à cirurgia cardiovascular11, e o pico do nível de HMGB-1 soro durante a CEC foi associado com a síndrome de resposta inflamatória sistêmica mais grave e deficiên…
The authors have nothing to disclose.
Apreço é estendido para o Dr. T. Taki e Dr. M. Funamoto pelo apoio técnico.
Rodent Ventilator 7025 | Ugo Basile | 7025 | Ventilator |
OxiQuant B | ENVITEC | 46-00-0023 | Oxygen Sensor |
CMA 450 Temperature Controller | CMA | 8003759 | Temperature Controller |
CMA 450 Heating Pad | CMA | 8003763 | |
CMA 450 Rectal Probe | CMA | 8003761 | |
DIN(8) to Disposable BP Transducer | ADInstruments | MLAC06 | |
Disposable BP Transducer | ADInstruments | MLT0670 | |
IX-214 Data Recorder | iWorx Systems | IWX-214 | amplifier |
LabScribe software | iWorx Systems | software | |
Roller pump | Furue Science | Model RP-VT | pump |
Happy Cath | Medikit | EB 19G 4HCLs PP | 17-gauge multiorifice angiocatheter |
SURFLO ETFE I.V. Catheter | Terumo | SR-OX2419CA | 24-gauge angiocatheter |
Oxygenator | Mera | HPO-002 | |
CPB circuit | Mera | custom-made | |
Hespander fluid solution | Fresenius Kabi | 3319547A4035 | Hydroxyethyl starch |