Fabricage procedures voor zeer magnetisch responsieve lanthanide ion chelaat polymolecular assembly’s worden gepresenteerd. De magnetische reactie wordt bepaald door de grootte van de vergadering, die is afgestemd door extrusie via nanopore membranen. De assemblages magnetische alignability en temperatuur-geïnduceerde structurele veranderingen worden gecontroleerd door de dubbele breking metingen, een gratis techniek om nucleaire magnetische resonantie en kleine hoek neutronen verstrooiing.
Bicelles zijn afstembare schijf-achtige polymolecular assembly’s gevormd uit een grote verscheidenheid van lipide mengsels. Toepassingen variëren van membraan eiwit structurele studies door nucleaire magnetische resonantie (NMR) tot nanotechnologische ontwikkelingen, met inbegrip van de vorming van optisch actieve en magnetisch schakelbare gels. Dergelijke technologieën vereisen hoge controle van de grootte van de vergadering, de magnetische reactie en de warmteweerstand. Mengsels van 1,2-dimyristoyl –sn– glycero-3-fosfocholine (DMPC) en haar lanthanide-ion (Ln3 +) chelaat fosfolipide conjugaat, 1,2-dimyristoyl –sn– glycero-3-phospho-ethanolamine-diethyleenglycol triaminepentaacetate () DMPE-DTPA), assembleren in zeer magnetisch responsieve assemblages zoals DMPC/DMPE-DTPA/Ln3 + (molaire verhouding 4:1:1) bicelles. Invoering van cholesterol (Chol-OH) en steroïde derivaten in de dubbelgelaagde resultaten in een andere set van assembly’s bieden unieke fysisch-chemische eigenschappen. Voor een bepaald lipide-samenstelling is de magnetische alignability evenredig aan de grootte van de bicelle. De kleurverandering van Ln3 + resulteert in ongekende magnetische reacties in termen van zowel de omvang als de uitlijning richting. De thermo-omkeerbare ineenstorting van de schijf-achtige structuren in blaasjes op verwarming kunt afstemming van de vergaderingen afmetingen door extrusie via membraanfilters met gedefinieerde porie maten. Het magnetisch alignable bicelles worden geregenereerd door afkoeling tot 5 ° C, wat resulteert in vergadering afmetingen gedefinieerd door het blaasje precursoren. Hierin, deze procedure fabricage wordt uitgelegd en de magnetische alignability van de assembly’s wordt gekwantificeerd door dubbele breking metingen onder een 5.5 T magnetisch veld. Het signaal van de dubbele breking, afkomstig uit de fosfolipide dubbelgelaagde, verder kan polymolecular veranderingen in de dubbelgelaagde. Deze eenvoudige techniek is complementair aan NMR experimenten die algemeen werkzaam zijn te karakteriseren van bicelles.
Bicelles zijn polymolecular schijf-achtige assemblages verkregen uit talrijke lipide-mengsels. 1 , 2 , 3 , 4 , 5 zijn ze veel gebruikt voor de structurele karakterisering van membraan biomoleculen door NMR spectroscopie. 6 , 7 echter, recente inspanningen willen uitbreiden op het gebied van mogelijke toepassingen. 5 , 8 , 9 de meest bestudeerde bicelle systeem bestaat uit een mengsel van 1,2-dimyristoyl –sn– glycero-3-fosfocholine (DMPC), die deel uitmaken van het vlakke deel van de vergadering en 1,2-dihexanoyl –sn– glycero-3-fosfocholine (DHPC) Fosfolipide die betrekking hebben op de rand. 1 , 2 , 3 de moleculaire geometrie van de fosfolipiden componeren het dubbelgelaagde dicteren de architectuur van de structuur van zelf geassembleerde polymolecular. 4 , 5 ter vervanging van DHPC met DMPE-DTPA genereert zeer magnetisch responsieve en afstembare bicelle systemen. 10 , 11 DMPC/DMPE-DTPA/Ln3 + (molaire verhouding 4:1:1) bicelles koppelen met veel meer paramagnetisch lanthanide ionen (Ln3 +) op van de dubbelgelaagde oppervlak, wat resulteert in een verbeterde magnetische reactie. 10 voorts, ter vervanging van de in water oplosbare DHPC moleculen met DMPE-DTPA/Ln3 + maakt de vorming van verdunning-resistente bicelles. 11
De magnetische alignability van vlakke polymolecular assembly’s wordt gedicteerd door hun algemeen magnetische energie,
(1)
Indien B de magnetische veldsterkte is, de magnetische constant, n het nummer van de aggregatie en de anisotropie van de moleculaire diamagnetisch gevoeligheid van het samenstellen van de dubbelgelaagde lipiden. Daarom is de reactie van DMPC/DMPE-DTPA/Ln3 + bicelles op magnetische velden op maat door hun grootte (totale getal n) en de moleculaire diamagnetisch gevoeligheid anisotropie Δχ. De laatste wordt gemakkelijk bereikt door het veranderen van de aard van de chelaat Ln3 +. 12 , 13 , 14 , 15 Introducing cholesterol (Chol-OH) of andere steroïde derivaten in de dubbelgelaagde biedt de mogelijkheid van tuning van zowel de statistische getal n en de Δχ van de magnetische gevoeligheid van de vergaderingen. 11 , 16 , 17 , 18 , 19 voor de samenstelling van een bepaald lipide, grotere assemblages bevatten meer lipiden die kunnen bijdragen aan de E-mag (grotere statistische getal n), wat resulteert in meer alignable soorten. De grootte van DMPC/DHPC bicelles, bijvoorbeeld, wordt conventioneel gecontroleerd door optimalisatie van het componeren vetgehalte voor verhouding of totaal. 20 , 21 , 22 maar dit mogelijk in DMPC/DMPE-DTPA/Ln3 + bicelles is, hun thermo-omkeerbare transformatie van bicelle naar blaasjes op verwarming aanbiedingen toegevoegd spastische opties. Mechanische betekent zoals extrusie via membraanfilters kunt vormgeven van de blaasjes. Het magnetisch alignable bicelles op koeling tot 5 ° C worden geregenereerd en hun afmetingen van het vesikel precursors worden gedicteerd. 11 Herein, richten we ons op het potentieel van mechanische fabricage procedures met DMPC/DMPE-DTPA/Tm3 + (molaire verhouding 4:1:1) of DMPC/Chol-OH/DMPE-DTPA/Tm3 + (molaire verhouding 16:4:5:5) als referentiesystemen. Het proces werkt naar analogie bij het werken met andere Ln3 + dan Tm3 +. Het brede scala van mogelijkheden die worden geboden door deze technieken zijn gemarkeerd in Figuur 1 en elders uitvoerig besproken. 23
Figuur 1: Schematisch overzicht van de mogelijke fabricage procedures. De bestudeerde magnetisch alignable Ln3 + chelaatvormers polymolecular assembly’s zijn samengesteld uit beide DMPC/DMPE-DTPA/Tm3 + (molaire verhouding 4:1:1) of DMPC/Chol-OH/DMPE-DTPA/Tm3 + (molaire verhouding 16:4:5:5). De droge lipide-film is met een 50 mM fosfaatbuffer op een pH van 7,4 gehydrateerd en het totale vetgehalte is 15 mM. Een effectieve hydratatie van de lipide-film vereist bevriezen of ontdooien cycli (FT) of verwarming en koeling cycli (H & C). H & C cycli zijn nodig om te regenereren monsters na de laatste vorst ontdooien stap, of te regenereren monsters bevroren gehouden over een langere periode van tijd als ze moeten worden gebruikt zonder verdere extrusie. Deze stappen worden uitvoerig besproken door Isabettini et al. 23 maximaal alignable polymolecular assemblages resultaat wordt bereikt, het leveren van de vergadering van de verschillende platforms gebaseerd op de samenstelling van lipide. De grootte van de bicelle en de magnetische alignability is afstembare door extrusie (Ext) via nanopore membraanfilters. De gepresenteerde uitlijning factoren Af werden berekend op basis van 2D kleine hoek neutronen verstrooiing (SANS) patronen van een DMPC/Chol-OH/DMPE-DTPA/Tm3 + (molaire verhouding 16:4:5:5) monster geëxtrudeerd via 800, 400, 200 of 100 nm poriën. SANS metingen zijn een complementaire middelen van het kwantificeren van de uitlijning van de bicelle die niet aan bod komt in meer detail hierin. 11 , 16 de Af varieert van -1 (parallelle neutronen verstrooiing of loodrecht uitlijning van de bicelles met betrekking tot de richting van het magnetisch veld) op 0 voor isotrope verstrooiing.Klik hier voor een grotere versie van dit cijfer.
De structuur van bicelles is uitgebreid bestudeerd door een breed scala van karakterisering technieken. 13 de uitlijning van de bicelles blootgesteld aan een magnetisch veld heeft gekwantificeerd met behulp van NMR-spectroscopie of kleine hoek neutronen verstrooiing (SANS) experimenten. 5 , 10 , 11 , 12 , 13 , 16 , 17 , 18 , 19 , 24 , 25 de verschuiving en de verbreding van de pieken van de NMR voordoet in aanwezigheid van Ln3 + zijn echter ernstige beperkingen aan de methode. 15 , 26 , 27 , 28 hoewel SANS experimenten lijden niet onder deze beperking, alternatieve en toegankelijker technieken zijn wenselijk voor routinematige kwantificering van magnetisch geïnduceerde uitlijning van assemblages in oplossing. Dubbele breking metingen zijn een levensvatbare en relatief eenvoudig alternatief. Analoog aan NMR experimenten onthullen dubbele breking metingen waardevolle informatie over lipide herschikkingen en lipide fasen die zich voordoen in de dubbelgelaagde. Bovendien, meetkundige transformaties die zich voordoen in de vergadering van de polymolecular met veranderlijke omgevingsomstandigheden zoals temperatuur worden gecontroleerd. 11 , 12 , 13 , 16 magnetisch geïnduceerde dubbele breking Δn′ is gebruikt voor het bestuderen van verschillende soorten fosfolipide systemen. 13 , 29 , 30 dubbele breking metingen gebaseerd op de techniek van de fase modulatie in een magnetisch veld is een haalbare methode om de oriëntatie van bicelles detecteren. 12 , 16 , 18 , 29 , 31 , 32 de mogelijkheid onderzoeken van bicelles met dubbele breking in hoge magnetische velden tot 35 T werd ook aangetoond door M. Liebi et al. 13
Als gepolariseerd licht een anisotrope materiaal binnenkomt, zal het worden gebroken in een gewone en buitengewone golf. 11 de twee golven hebben verschillende snelheden en in fase door een δ retardatie worden verschoven. De mate van vertraging δ wordt gemeten en omgezet in een dubbele breking signaal te kwantificeren van de mate van anisotropie in het materiaal met
(2)
waar is λ de golflengte van de laser en d de dikte van het monster. Fosfolipiden zijn optisch anisotrope en hun optische as samenvalt met hun lange moleculaire assen, parallel aan de staarten van koolwaterstof. 11 , 12 geen vertraging wordt gemeten als de fosfolipiden willekeurig in oplossing georiënteerde zijn. Vertraging wordt gemeten als fosfolipiden, parallel met elkaar worden uitgelijnd. Het magnetisch geïnduceerde dubbele breking kan hebben een positief of negatief teken afhankelijk van de oriëntatie van de moleculen in het magnetisch veld; Zie Figuur 2. Fosfolipiden parallel uitgelijnd met de x-as zal resulteren in een negatieve , terwijl die uitgelijnd langs de z-as in een positieve resulteren . Geen dubbele breking is waargenomen wanneer de optische as samenvalt met de richting van licht propagatie zoals de fosfolipide uitgelijnd evenwijdig aan de y-as.
Figuur 2: Aanpassing van de fosfolipiden en het bijbehorende teken van het magnetisch geïnduceerde dubbele breking . Het teken van de gemeten is afhankelijk van de oriëntatie van de fosfolipide in het magnetisch veld. Onderbroken lijnen geven de optische as van het molecuul. Het licht is gepolariseerd op 45° en zich voortplant in de y-richting. Het magnetisch veld B is in de z-richting. Dit cijfer is gewijzigd van M. Liebi. 11 Klik hier voor een grotere versie van dit cijfer.
In het geval van een isotroop colloïdale suspensie van bicelles zullen de oriëntatie geïnduceerd door de rangschikking van de fosfolipiden in de dubbelgelaagde verloren gaan, de retardatie δ zeroing. De bicelles moet ook uitlijnen om te oriënteren de optisch actieve fosfolipiden in hun bilayers, waardoor een retardatie δ van de gepolariseerd licht. Dubbele breking is derhalve een gevoelig instrument te kwantificeren van de magnetische alignability van de polymolecular-assembly’s. Bicelles uitgelijnd loodrecht op het magnetisch veld resulteert in een positieve , terwijl die parallel uitgelijnd in een negatieve resulteert . Het bord hangt af van de uitlijning van de setup en kan worden gecontroleerd met een referentiemonster.
Een gedetailleerd overzicht van hoe de dubbele breking metingen werden gebruikt in combinatie met SANS experimenten voor de evaluatie van methoden voor het genereren van zeer magnetisch responsieve Ln3 + chelaat fosfolipiden assemblages is in Isabettini et al. 23 de voorgestelde fabricage-protocollen zijn ook van toepassing voor assembly’s die zijn samengesteld uit de langere DPPC en DPPE-DTPA fosfolipiden of voor degenen met chemisch gemodificeerde steroïde derivaten in hun d…
The authors have nothing to disclose.
De auteurs erkennen de Zwitserse National Science Foundation voor de financiering van SMhardBi (project nummer 200021_150088/1). De SANS experimenten werden uitgevoerd bij de Zwitserse spallation neutron bron SINQ, Paul Scherrer Instute, Villigen, Zwitserland. Dr. Joachim Kohlbrecher danken de auteurs hartelijk voor zijn leiding met de SANS-experimenten. De dubbele breking meting setup onder hoge magneetvelden is geïnspireerd vanuit de bestaande installatie op het Hoogveld magnetische laboratorium HFML, Nijmegen, Nederland. Wij danken Bruno Pfister voor zijn hulp bij de ontwikkeling van de elektronica van de dubbele breking setup, Jan Corsano en Daniel Kiechl voor de bouw van de kaders mooi fijn en facile uitlijning van de laser en Dr. Bernhard Koller voor lopende technische ondersteuning.
1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) | Avanti Polar Lipids | 850345P | >99% |
1,2-dimyristoyl-sn-glycero-3-phospho-ethanolamine-diethylene triaminepentaacetate acid hexammonium salt (DMPE-DTPA) | Avanti Polar Lipids | 790535P | >99% |
Thulium(III) chloride | Sigma-Aldrich | 439649 | anhydrous, powder, 99.9% trace metals basis |
Dysprosium(III) chloride | Sigma-Aldrich | 325546 | anhydrous, powder, 99.9% trace metals basis |
Ytterbium(III) chloride | Sigma-Aldrich | 439614 | anhydrous, powder, 99.9% trace metals basis |
Chloroform | Sigma-Aldrich | 319988 | contains ethanol as stabilizer, ACS reagent, ≥99.8% |
Methanol | Sigma-Aldrich | 34860 | ≥99.9% |
Cholesterol | Amresco | 433 | Ultra pure grade |
D2O | ARMAR chemicals | 1410 | 99.8 atom % D |
Ultrapure water | Millipore | Synergy pak2 (SYPK0SIX2), Millipack GP (MPGP02001) | |
electronic pH meter | Metrohm | 17440010 | |
Whatmann Nuclepore 25 mm 100nm membrane filter | VWR | 515-2028 | |
Whatmann Nuclepore 25 mm 200nm membrane filter | VWR | 515-2029 | |
Whatmann Nuclepore 25 mm 400nm membrane filter | VWR | 515-2030 | |
Whatmann Nuclepore 25 mm 800nm membrane filter | VWR | 515-2032 | |
Whatmann Filter paper | VWR | 230600 | |
25 ml round bottom flask | VWR | 201-1352 | 14/23 NS |
3 ml glass snap-cup | VWR | 548-0554 | ND18, 18x30mm |
2.5 ml glass syringe | Hamilton | ||
Sodium dihydrogen phosphate dihydrate | Merk | 1.06342 | Salt used to make phosphate buffer |
di-Sodium hydrogen phosphate | Merk | 1.06586 | Salt used to make phosphate buffer |
Liquid Nitrogen | Carbagas | – | |
Pressurized Nitrogen gas | Carbagas | – | 200 bar bottle |
Lipid Extruder 10 ml | Lipex | – | Fully equipped with thermobarrel |
High-pressure PVC tube | GR NETUM | – | must resist more than 4 MPa |
Serto adaptors | Sertot | – | |
Nitrile gloves | VWR | – | |
2 ml glass pipettes | VWR | 612-1702 | 230 mm long |
Diode Laser | Newport | LPM635-25C | |
DSP Dual Phase Lock-in Amplifier | SRS | SR830 | |
Photodiode Detector | Silonex Inc. | SLSD-71N5 | 5mm2, Silicon, photo-conductive |
5.5 T Cryogenic Magnetic | Cryogenic/Oerlikon AG | – | 12 bar He-cooled. RW4000/6000 compressor, RGD 5/100 TA cryo-head |
Second order low pass filter | home-built | – | Linear power supply 24V DC, second order, Sallen Key, cut-off frequency 360 Hz, +/- 12V, max 10 mA |
Photoelastic modulator | Hinds instruments | PEM-90 | |
Glan-Thompson Calcite Polarizer | Newport | 10GT04 | 25.4mm diameter |
Quartz sample cuvette | Hellma | 165-10-40 | temperature controlled cell, 0.8 ml, 10mm path length |
Temperature probe | Thermocontrol | – | Type K, 0.5mm diameter, Thermocoax |
Non-polarizing mirrors | Newport | 50326-1002 | 25.4mm |
RS 232 cables | National Instruments | 189284-02 | For Connecting to the RS-232 Port on the front of Compact FieldPoint Controllers |
BNC 50 Ω cable and connectors | National Instruments | 763389-01 | |
cFP-AI-110 | National Instruments | 777318-110 | 8-Channel Analog Voltage and Current Input Module for Compact FieldPoint |
cFP-CB-1 | National Instruments | 778618-01 | Integrated Connector Block for Wiring to Compact FieldPoint I/O |
cFP-CB-3 | National Instruments | 778618-03 | Integrated Isothermal Connector Block for Wiring Thermocouples to the cFP-TC-120 Module |
cFP-TC-120 | National Instruments | 777318-120 | 8-Channel Thermocouple Input Module for Compact FieldPoint |
cFP-1804 | National Instruments | 779490-01 | Ethernet/Serial Interface for NI Compact FieldPoint |
LabView 2010 | National Instruments | – | |
Industrial power supply | Traco Power | TCL 060-124 | 100-240V AC |
Waterbath | Julabo | FP40-HE | refrigerated/Heating Circulator |