ステップバイ ステップのラマン散乱と赤外分光電気化学分析のプロトコルが表示されます。
提示された作品では、エネルギーの振動レベルの分子構造の変化の分析のためのツールとして 2 つの分光電気化学的手法を説明します。ラマン散乱と赤外線分光電気化学は、有機電子化合物における構造変化の高度な解析に使用できます。ここでは、ステップバイ ステップのラマン散乱と赤外分光電気化学による解析が表示されます。ラマン散乱と赤外分光電気化学的手法、電気化学プロセス中に発生した構造変化についての補足情報を提供する、すなわちの酸化還元プロセスの調査とその製品のことができます。酸化還元反応、ソリューションと固体の両方の製品を識別する赤外・ ラマンの分光電気化学分析の例が掲載されています。
電気化学的および分光学的手法の組み合わせにより電極表面で分子、従って電気化学プロセスのメカニズムを解明、解決策の構造変化の追跡可能性。反応の機構の in situ研究分光電気化学的方法が用いられます。元場測定を疑う余地のない利点は、プロセスの中間製品に生じる信号の観測の可能性または調査プロセス、製品がすることはできません1。すべての分光学のラマン散乱と赤外分光、設備の可用性のための電気化学的プロセスの解析と測定のしばしば破壊的な自然の最も強力です。
赤外とラマン分光学種したがって既存の化学結合の振動構造に関する情報を提供します。両方の技術で観測された信号の性質が異なっているので、いくつかの振動は2を互いに補完し、IR またはラマン スペクトルでのみアクティブにあります。これはアカウントに取られるべき分光電気化学的分析を計画するとき、可能であれば、analyte の振動構造が赤外・ ラマン分光法を使用して検討すべき。最良の結果を取得するは、構造の変更が特定の技術でアクティブなグループを含む電気化学的プロセスの結果。たとえば、赤外分光法が CO、CN を含むプロセスに最適でしょう-いいえまたは NH グループの形成や破損3。常に、差分スペクトル分光電気化学的調査を登録することをお勧めします。また、このようなスペクトルは低強度の芳香族系の構造の変更の追跡を可能と、信号の変化を開示します。さらに、微分のスペクトルが常に少ない複雑変更のみが登録されているようになり、スペクトルの解釈より簡単に。
IR 分光電気化学的実験は主に水溶性の製品、中間体、電気化学反応の反応物の監視用します。このようなテストは、様々 な有機・無機を含むシステムまたは生化学システム3,4,5,6,7,8実行可能性があります。赤外分光の場合水素水のような結合を発生、溶剤は避けるべき 1 つを忘れてはいけません。
赤外・ ラマン測定を続行するいくつかの方法があります。赤外分光の場合液体のための従来の IR キュベットを使用ことができます伝送モードで測定を行うことができます。光学的な透明電極 (ボロンドープ ダイヤモンド電極など) または (Au または Pt) 高級金属製の多孔電極 (金属ガーゼ作用電極) はそのような伝達細胞4、電極として使用通常 9。透過分光電気化学セルの例を図 1に示します。
伝送、代わりに 2 番目の手法で ATR (減衰全反射) 添付ファイル10のおかげで、反射モードが適用されます。このメソッドは、ソリューションと固体の両方を分析できます。通常とき外部反射吸収分光法を使用すると、原則的に、任意の作用電極を使用できますが、しかし、唯一の溶存種を調べることができます。ただし、いくつかのケースで ATR 法により、また内部リフレクション メソッド5,8を使用して固体の状態でプロセスの調査のため。特殊な細胞が ATR 結晶上にスパッタした金属微粒子が作用電極 (図 2) として機能するこの技は、必要です。電極として行動することができます ATR Ge 結晶自体もいくつかのケースで (少なくともないあまりにも大電流用)5。
2 番目の手法はラマンの分光電気化学;電気化学とラマン分光法を組み合わせた手法は一般 polypyrroles共役高分子の11、ポリアニリン12のような堆積層における潜在的誘起構造変化の調査に使用13、ポリカルバゾール14または PEDOT15。さらに高分子フィルムを単分子膜もテスト19,20,21, ができますこの場合はゴールドやプラチナなどの金属基板が最寄り。ラマン散乱分光電気化学的研究の手順は、他の分光電気化学的手法に類推的なすなわち、分光計、ポテンショスタットと結合する必要がありますおよびフィルムのスペクトルの定電位条件で取得されます。様々 な電位の応用18。通常、電極テフロン ホルダー (図 3) にマウントされている古典的な石英キュベットに基づく 3 電極分光電気化学セルを構築できます。アクイジション ・ パラメーターは、レーザー、格子、等のタイプが好き。、調査のレイヤーのプロパティに依存します。いくつかのパラメーターの選択が非常に困難にすることができます、例えば、 1 つは、様々 な励起波長は異なるスペクトルれることが覚えています。通常は、入射光の高エネルギー詳細についてはスペクトルだけでなく、分析を妨げる蛍光現象のリスクが高いに表示されます。一般的に、励起レーザー ラマンを選択するために最初に、試料の紫外-可視-近赤外スペクトルを取得する便利です。波長可変レーザは、励起波長誘導共鳴ラマン散乱の結果、分子の電子転移と偶然、調整できます。この場合は、通常、登録できませんが増加のラマン散乱強度のスペクトルの選ばれた地域、または新しい信号も形成が観察されます。構造変化の分析は、記録されたラマン バンドのすることができる文献データまたは DFT シミュレーション23に基づいて割り当てで構成されます。
赤外・ ラマン技術は、適用される可能性の下で起こっている構造変化の調査のため、酸化還元反応物の調査のために適しています。しかし、実用的な観点から、ラマン分光法は、そのような実験の分析ツールとして handier です。ラマン分光電気化学は、無極性結合をもつ試料にも適用できるようより多くの可能性を提供します。それは従って正常に使用されて炭素材料、高分子材料、電池等の調査のため。29,30,31,32,33ので散乱光をラマン分光法で大幅に測定は一般的に働く電極材料や構造の制限。さらに、本明細書で使用するとき、入射光 (UV 可視-近赤外) 不十分な標準電気化学セルの使用では、グラスワインに吸収されます。偉大な利点は、光ファイバーを通じて分析計外測定を行う可能性もです。ラマン スペクトルを登録すると、入射光をサンプルに正しく集中する必要があります。測定セルのさまざまな場所で光のビームの焦点を当て、ことが判断できる場合例えばソリューションで発生した化学組成の変化。近くで、電極または電極表面に吸着した種で続いています。
固体試料、表面または多層構造でも、その深さでのプロファイルに関する適切な解像度をもつラマン分光学の使用ができます。34,35,36,37 1 つはしたがって、表面形状、断面、表面の化学種の分布についての情報を得ることができます。ラマン分光電気化学その場で変更の追跡、これらのすべての機能の酸化還元過程を許可し、したがって個々 のレイヤーは、複数の酸化/還元サイクル中に、システムの耐久性の品質を推定または多層構造の拡散を勉強しています。ラマン分光電気化学の汎用性は、事実ソリューション両方電気化学的プロセスを吟味する使用できますか、固体典型的な実験細胞あるいはテスト Led、電池、OPVs のような多層の固体構造など。
ラマン分光法の疑う余地のない不利な点、したがってまた明滅現象はしばしば不可能スペクトルを分析する観察された蛍光性のための限界。この現象は、場合によっては励起波長または写真漂白 – 予備の照明を変更することによって排除することができます。
The authors have nothing to disclose.
これらの結果につながる研究は、キュリー スクウォドフスカ許可契約なし 674990 (EXCILIGHT) の下で欧州連合のホライゾン 2020年研究と技術革新プログラムからの資金を受けています。許可契約なし 691684 の下で欧州連合のホライゾン 2020年研究と技術革新プログラムから資金を供給されるネットワーク行動に感謝いたします。
Potentiostat | Metrohm | Autolab PGSTAT100 | |
Raman microscope | Renishaw | inVia | |
FT-IR Spectrometer | PerkinElmer | Spectrum Two | |
Bu4NBF4 | Sigma-Aldrich | 86896 | |
DCM | Sigma-Aldrich | 443484 | |
Isopropanol | Sigma-Aldrich | 675431 | |
Acetone | Sigma-Aldrich | 439126 |