Nous décrivons ici un protocole pour toute monture immunofluorescence et imageur l’analyse quantitative volumétrique des embryons de souris stade précoce. Nous présentons cette technique comme une approche puissante pour qualitativement et quantitativement évaluer les structures cardiaques au cours du développement et proposer qu’il peut être largement adaptable à d’autres systèmes d’organe.
L’utilisation de techniques d’imagerie jamais progresser a contribué largement à notre meilleure compréhension du développement embryonnaire. Organogenèse et développement pré-implantatoire sont deux domaines de recherche qui ont grandement bénéficié de ces avancées, en raison de la qualité des données qui peuvent être obtenues directement à partir d’imagerie pré-implantatoire des embryons ou ex vivo organes. Bien que pré-implantatoire des embryons ont fourni des données avec une résolution spatiale élevée surtout, stades ont été moins sensible à la reconstruction en trois dimensions. Obtention de données 3D ou volumétriques de haute qualité pour les structures embryonnaires connues en combinaison avec la cartographie sort ou traçage de la lignée génétique permettra une analyse plus détaillée des événements morphogénétiques qui se déroulent durant l’embryogenèse.
Ce protocole décrit une approche entier-Montez immunofluorescence permettant pour l’étiquetage, la visualisation et la quantification des populations de cellules progénitrices dans le cardiaque en développement croissant, une structure clé formée pendant le développement du cœur. L’approche est conçue de telle manière que les deux niveaux cellulaire et tissulaire peut se renseigner. À l’aide de la microscopie confocale et traitement d’images, ce protocole permet de reconstruction spatiale tridimensionnelle du croissant cardiaque, offrant ainsi la capacité d’analyser la localisation et l’Organisation des populations de souches spécifiques pendant cette phase critique du développement du cœur. Ce qui est important, l’utilisation d’anticorps de référence permet de masquage successive du croissant cardiaque et mesures quantitatives ultérieures des zones dans le croissant. Ce protocole permettra non seulement un examen détaillé du développement précoce de coeur, mais avec des adaptations devrait s’appliquer à la plupart systèmes organiques dans la gastrula d’embryon précoce de la souris du stade somite.
L’étude de l’organogenèse a longtemps compté sur l’observation des événements morphogénétiques dans l’embryon en développement. Ces études s’appuient souvent sur l’utilisation des colorants fluorescents ou reporters de traçage de lignée en combinaison avec l’étiquetage des populations de référence défini. 1 en comparant les positions relatives de ces étiquettes, informations peuvent être tirées sur l’origine, mouvement ou ultime contribution d’une population d’intérêt. Transplantation et expériences de cartographie sort utilisent des repères morphologiques ou injection de colorants en lignées non motiles pour définir le point de départ des cellules d’intérêt, qui sont ensuite examinés pour contribution à l’embryon développé. 2 , 3 , 4 , 5 expériences génétiques de lignée-traçage utilisent le même concept avec des allèles de journaliste bien définies qui sont utilisées pour les populations de cellules étiquette sans manipulation expérimentale. Clé de ces approches est la capacité de déterminer, avec une haute résolution spatiale, les lieux de l’expérimental et les étiquettes de référence. Ces démarches ont abouti à des progrès remarquables en développement pré-implantatoire et explant des études de l’organogenèse. 6 , 7 , 8 , 9
Les événements développementaux qui sous-tendent la morphogenèse de coeur ont été mieux en mieux décrites dans ces dernières années. 10 , une des grandes découvertes dans ce domaine de recherche est la description d’un certain nombre de populations de souches qui se distingue par l’expression de marqueurs uniques. 11 ces populations comprennent le premier et le deuxième champs de coeur (FHF et SHF), qui sont présents dans le croissant cardiaque à la face antérieure de l’embryon à jour embryonnaire (E) 8.25 du développement chez la souris. 12 ces populations sont souvent examinées par une combinaison de la microscopie à champ large, qui fournit des informations au niveau du tissu et série de sectionnement avec tests d’immunofluorescence, qui offre une haute résolution cellulaire mais seulement informations spatiales bidimensionnelles. 13 ainsi, alors que ces études ont grandement contribué à améliorer notre compréhension du développement du cœur, les méthodes disponibles ont limité en profondeur l’analyse quantitative de la morphogenèse durant ces étapes, créant la nécessité d’approches afin d’examiner la Organisation de ces populations sur le plan d’ensemble-organisme.
Les récentes avancées en microscopie confocale et analyse d’images 3D permettent à haute résolution et haut débit reconstructions algorithmique des cellules et des structures le in situ avec une relative facilité, ouvrant ainsi la voie pour des études détaillées du complexe structures cellulaires. 14 avec l’augmentation de puissance de calcul et l’élaboration d’algorithmes de gestionnaires données volumineuses, nécessaires pour gérer l’augmentation exponentielle de la taille des ensembles de données, l’imagerie analyses peuvent maintenant être entièrement automatisées. 15 l’analyse automatisée des ensembles de données d’imagerie a l’avantage d’être impartial, mais il n’est plus aussi fiable que la qualité de l’ensemble de données d’entrée ; Ensuite, il est impératif que les meilleures pratiques sont utilisés pendant l’acquisition et de traitement préalable de l’image afin d’assurer la meilleure qualité, l’analyse impartiale. 16 protocoles peuvent être complètement automatisées et partagé pour la reproductibilité et les algorithmes utilisés par les logiciels propriétaires sont facilement disponibles dans les bibliothèques pour être utilisé par les scientifiques qui ont connaissance exclusive moderne ou open-source outils de développement. 17
Le protocole suivant explique les étapes nécessaires pour effectuer une telle analyse sur un modèle bien défini de l’organogenèse, la formation du croissant cardiaque au cours du développement du cœur. Plus précisément, ce protocole décrit comment (1) récolte et disséquer des embryons au stade de crescent cardiaque, (2) effectuer le support entier immunofluorescence pour référence (Nkx2-5) et expérimentales des marqueurs (Foxa2Cre:YFP18,,19), (3) préparer et les embryons à l’aide de la microscopie confocale, l’image et enfin (4) analyser et quantifier les images obtenues en utilisant des approches avancées en trois dimensions. Tandis que le croissant cardiaque est utilisé comme un exemple ici, avec des modifications appropriées, ce protocole peut être utilisé pour l’analyse de nombreuses lignées en gastrula d’embryons au stade précoce somite.
Le protocole ci-dessus décrit une stratégie pour obtenir des données quantitatives des images de haute qualité de support entier immunofluorescence des embryons de souris après l’implantation. Lorsque exécutée correctement, les données volumétriques 3D générées par le biais de ces étapes peuvent servir d’analyse comparative et intersectionnelle de plusieurs domaines au sein de l’embryon. La surface signal masquant l’approche décrite est particulièrement utile dans les enquêtes sur les populations …
The authors have nothing to disclose.
Ce travail a été financé par le NIH/NHLBI R56 HL128646 et le Mindich Child Health and Development Institute (MCHDI) à ISMMS (à s.d.). E.B. est pris en charge par un NIH/NIDCR stage T32 HD075735. Microscopie et analyse d’images a été réalisée à la base de la microscopie à l’école de médecine de l’Icahn au Mont Sinaï, qui est soutenu en partie par le Tisch Cancer Institute à Mount Sinai P30 CA196521 – subvention de soutien Cancer Center.
Blunt probe | Roboz | RS-9580 | |
Forceps | Roboz | RS-8100 | |
Fine forceps | Roboz | RS-5015 | |
Dissection scissors | Roboz | RS-5912 | |
Saponin | Sigma Aldrich | 84510 | |
Bovine Serum Albumin | Sigma Aldrich | A8022 | |
Triton | RPI | A4490 | |
Goat anti-Nkx2-5 | Santa Cruz Biotech | sc-8697 | Used at 1:100-1:500 |
Chicken anti-GFP | abcam | ab13970 | Used at 1:500 |
Rabbit anti-Islet1 | abcam | ab109517 | Used at 1:100 |
Rabbit anti-Hcn4 | Millipore | AB5808 | Used at 1:100 |
488 anti-chicken | Jackson Immunoresearch | 703-546-155 | Reconstituted in water and stored at -20 °C in final concentration of 50% glycerol. Used at 1:500. |
555 anti-goat | Thermo Fisher Scientific | A21432 | Used at 1:500 |
647 anti-rabbit | Jackson Immunoresearch | 711-606-152 | Reconstituted in water and stored at -20 °C in final concentration of 50% glycerol. Used at 1:500. |
DAPI | Sigma Aldrich | D9542 | |
n-Propyl gallate | Sigma Aldrich | 2370 | Stock solution is 20% w/v in DMSO. Working solution prepared by mixing 1 part 10x PBS with 9 parts 100% glycerol and slowly adding 0.1 part stock solution. |
Superfrost Plus microscopy slides | VWR Scientific | 48311-703 | |
22×22 mm coverslips | VWR Scientific | 48366-227 | |
Imaris 8.4.1 | Bitplane |