Summary

如何建立一个包括眼球跟踪器的 Dichoptic 演示系统

Published: September 06, 2017
doi:

Summary

我们最近提出了一种方法, 允许 dichoptic 视觉刺激演示和双目眼睛跟踪同时1。关键是红外眼跟踪器和相应的红外透明镜像的组合。这份手稿提供了一个在初始设置和日常操作的深度协议。

Abstract

不同的刺激对两只眼睛的介绍, dichoptic 介绍, 是必要的研究涉及3D 视觉和双眼抑制。关于瞳孔和动眼神经测量的独特实验价值的文献越来越多, 特别是对双眼抑制的研究。虽然获得眼球跟踪措施将有益于使用 dichoptic 演示的研究, 但 dichoptic 演示的硬件 (如镜子) 通常会干扰高质量的眼球跟踪, 尤其是在使用视频眼睛跟踪.我们最近描述了一个实验性的设置, 它将一个标准的 dichoptic 演示系统与红外眼睛跟踪器结合使用红外透明镜像1。安装程序与标准监视器和眼跟踪器兼容, 易于实施, 而且价格适中 (按1000美元的顺序)。相对于现有的方法, 它具有不需要特殊设备的好处, 对视觉刺激的性质和质量的限制很少。在这里, 我们提供了建设和使用我们的设置视觉指南。

Introduction

在正常的观察条件下, 我们的每一个眼睛都接受一个稍微不同的视觉输入。然后处理这个输入, 以产生一个连贯的, 三维的世界代表。Dichoptic 演示, 独立控制两只眼睛所呈现的输入的实践, 从而使研究人员能够从两个 two-dimensional 视网膜图像2中重建一个三维的表示.,3,4。另外, 如果两只眼睛的图像太不相同, 这种双眼组合就会失败, 而观察者却只报告其中一个图像的感知, 而另一只则被压制, 在诸如双目对抗等现象中5和连续的 flash 抑制6。这种双眼抑制的研究人员, 也使用 dichoptic 演示, 在这种情况下, 以检查与主题有关的问题, 如神经轨迹的意识7, 感性选择8,9, 和无意识正在处理10

凝视和瞳孔动力学在人类行为和知觉的研究中被记录为多个目的。凝视方向可以通知有关, 例如, 注意分配11,10,13和决策14, 而瞳孔大小可以显示可视处理的各个方面15, 16, 任务约定17, 或流体智能18

结合眼跟踪与 dichoptic 演示是有用的研究, 例如, 三维 (3D) 知觉19,20,21,22或视觉反应在双眼抑制期间输入23,24,25。例如, 在连续的 flash 抑制23中, 发现了眼球运动, 而没有主观感知的无意识处理。临床视觉研究人员可以使用的能力, 跟踪两眼在 dichoptic 的演示, 以调查眼部疾病, 影响两眼非对称, 例如, 监测单眼和双目视觉失真发生在弱视26和黄斑27

我们最近描述了一个设置1 , 它允许高质量的视频眼跟踪和 dichoptic 刺激的组合, 对刺激的大小或颜色的限制很少, 我们评估了它的性能。下面我们将总结这个设置的构造和使用。

Protocol

本议定书已得到密歇根州立大学机构审查委员会的批准. 1. 生成系统 基本原理 准备镜像设置, 经典惠斯立体 28 的变体在 图1中演示, 由位于45和 #176 的两个镜像组成; 相对于参与者和 #39 中线的角度。镜子反映了两个屏幕的刺激, 它们位于桌子的两端, 彼此面向. 在镜子前放置一个参与者, 让他?…

Representative Results

在协议中描述的校准后, 我们执行了校准-验证程序, 而不存在镜像的问题。图 5清楚地说明了该方法的有效性, 它显示了照相机的图像 (使用研究端眼跟踪系统) 与镜像到位。两组平行线沿参与者的鼻子和眼睛眉毛以上的线是镜子的边缘, 但, 然而, 在该框架内的脸是一样清楚的, 因为它是外面。这突出显示了在相机记录的波长上缺少信号损耗。一个正式?…

Discussion

我们提出了一个 step-by 步指南的建设和使用的实验设置, 允许同时跟踪眼睛和 dichoptic 呈现视觉刺激。在许多情况下, dichoptic 刺激使用, 关键的问题, 防止有效的眼睛跟踪是 dichoptic 表示阻挡视线的视频眼追踪。这是通过使用红外线透明的镜子和红外线敏感的眼睛跟踪器来解决的。这种设置允许3D 视觉, 双眼抑制或临床研究的研究员收集高质量的眼球跟踪数据, 同时使用大的, 任意颜色的刺激。

<p c…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

作者感谢彼得 Schiphorst 在设计设置和提供图1和3的图形方面的作用, 以及马尼克斯 Naber 的有用讨论和他对图表6的贡献。作者还承认研究人员和出版商从一个已发表的论文1中重用图1和6。

Materials

Mirrors in Setup 1 Edmund Optics  #64-452 dimensions 10.10 × 12.70 cm; Reflectance: 400 ~ 690 nm; Transmission: 750 ~ 1200nm
Mirrors in Setup 2 Edmund Optics Item discontinued dimensions 10.10 × 12.70 cm; Reflectance: 425 ~ 650 nm; Transmission: 800 ~ 1200nm
Other Mirror Option Edmund Optics #62-634 dimensions 12.50 × 12.50 cm; Reflectance: 425 ~ 650 nm; Transmission: 800 ~ 1200nm
Eye Tracker in Setup 1 SR Research Ltd., Mississauga, Ontario, Canada Eyelink 1000 Transmission: 890 ~ 940 nm
Eye Tracker in Setup 2 The Eye Tribe Aps, Copenhagen, Denmark Eye Tribe (item discontinued) Transmission: around 850 nm

Referencias

  1. Brascamp, J. W., Naber, M. Eye tracking under dichoptic viewing conditions: a practical solution. Behav. Res. Methods. , 1-7 (2016).
  2. Barendregt, M., Harvey, B. M., Rokers, B., Dumoulin, S. O. Transformation from a Retinal to a Cyclopean Representation in Human Visual Cortex. Curr. Biol. 25 (15), 1982-1987 (2015).
  3. Held, R. T., Cooper, E. A., Banks, M. S. Blur and Disparity Are Complementary Cues to Depth. Curr. Biol. 22 (5), 426-431 (2012).
  4. Julesz, B. . Foundations of cyclopean perception. xiv, (1971).
  5. Carmel, D., Arcaro, M., Kastner, S., Hasson, U. How to Create and Use Binocular Rivalry. J. Vis. Exp. (45), (2010).
  6. Tsuchiya, N., Koch, C. Continuous flash suppression reduces negative afterimages. Nat. Neurosci. 8 (8), 1096-1101 (2005).
  7. Crick, F., Koch, C. Consciousness and neuroscience. Cereb Cortex. 8 (2), 97-107 (1998).
  8. Jiang, Y., Costello, P., Fang, F., Huang, M., He, S. A gender- and sexual orientation-dependent spatial attentional effect of invisible images. Proc. Natl. Acad. Sci. 103 (45), 17048-17052 (2006).
  9. Jiang, Y., Costello, P., He, S. Processing of Invisible Stimuli: Advantage of Upright Faces and Recognizable Words in Overcoming Interocular Suppression. Psychol. Sci. 18 (4), 349-355 (2007).
  10. Bahrami, B., Carmel, D., Walsh, V., Rees, G., Lavie, N. Spatial attention can modulate unconscious orientation processing. Perception. 37 (10), 1520-1528 (2008).
  11. Smith, D. T., Ball, K., Ellison, A., Schenk, T. Deficits of reflexive attention induced by abduction of the eye. Neuropsychologia. 48 (5), 1269-1276 (2010).
  12. Deubel, H., Schneider, W. X. Saccade target selection and object recognition: Evidence for a common attentional mechanism. Vision Res. 36 (12), 1827-1837 (1996).
  13. Pastukhov, A., Braun, J. Rare but precious: Microsaccades are highly informative about attentional allocation. Vision Res. 50 (12), 1173-1184 (2010).
  14. Reddi, B. a. J., Carpenter, R. H. S. The influence of urgency on decision time. Nat. Neurosci. 3 (8), 827-830 (2000).
  15. Barbur, J. L. Learning from the pupil-studies of basic mechanisms and clinical applications. Vis. Neurosci. 1, 641-656 (2004).
  16. Naber, M., Nakayama, K. Pupil responses to high-level image content. J. Vis. 13 (6), 7-7 (2013).
  17. Gilzenrat, M. S., Nieuwenhuis, S., Jepma, M., Cohen, J. D. Pupil diameter tracks changes in control state predicted by the adaptive gain theory of locus coeruleus function. Cogn. Affect. Behav. Neurosci. 10 (2), 252-269 (2010).
  18. Van Der Meer, E., et al. Resource allocation and fluid intelligence: Insights from pupillometry. Psychophysiology. 47 (1), 158-169 (2010).
  19. Erkelens, C. J., Regan, D. Human ocular vergence movements induced by changing size and disparity. J. Physiol. 379, 145-169 (1986).
  20. Wismeijer, D. A., Erkelens, C. J., van Ee, R., M, W. e. x. l. e. r. Depth cue combination in spontaneous eye movements. J. Vis. 10 (6), 25-25 (2010).
  21. Takagi, M., et al. Adaptive Changes in Dynamic Properties of Human Disparity-Induced Vergence. Invest. Ophthalmol. Vis. Sci. 42 (7), 1479-1486 (2001).
  22. Maiello, G., Harrison, W. J., Bex, P. J. Monocular and Binocular Contributions to Oculomotor Plasticity. Sci. Rep. 6, (2016).
  23. Rothkirch, M., Stein, T., Sekutowicz, M., Sterzer, P. A direct oculomotor correlate of unconscious visual processing. Curr. Biol. 22 (13), R514-R515 (2012).
  24. Spering, M., Pomplun, M., Carrasco, M. Tracking Without Perceiving A Dissociation Between Eye Movements and Motion Perception. Psychol. Sci. 22 (2), 216-225 (2011).
  25. Spering, M., Carrasco, M. Acting without seeing: eye movements reveal visual processing without awareness. Trends Neurosci. 38 (4), 247-258 (2015).
  26. Piano, M. E. F., Bex, P. J., Simmers, A. J. Perceptual Visual Distortions in Adult Amblyopia and Their Relationship to Clinical FeaturesPerceptual Visual Distortions in Adult Amblyopia. Invest. Ophthalmol. Vis. Sci. 56 (9), 5533-5542 (2015).
  27. Wiecek, E., Lashkari, K., Dakin, S. C., Bex, P. Novel Quantitative Assessment of Metamorphopsia in MaculopathyQuantitative Assessment of Metamorphopsia. Invest. Ophthalmol. Vis. Sci. 56 (1), 494-504 (2015).
  28. Wheatstone, C. Contributions to the Physiology of Vision.–Part the First. On Some Remarkable, and Hitherto Unobserved, Phenomena of Binocular Vision. Philos. Trans. R. Soc. Lond. 128, 371-394 (1838).
  29. Beach, G., Cohen, C. J., Braun, J., Moody, G. Eye tracker system for use with head mounted displays. 1998 IEEE Int. Conf. Syst. Man. 5, 4348-4352 (1998).
  30. Gibaldi, A., Vanegas, M., Bex, P. J., Maiello, G. Evaluation of the Tobii EyeX Eye tracking controller and Matlab toolkit for research. Behav. Res. Methods. , 1-24 (2016).
  31. Fox, R., Todd, S., Bettinger, L. A. Optokinetic nystagmus as an objective indicator of binocular rivalry. Vision Res. 15 (7), 849-853 (1975).
  32. Leopold, D. A., Fitzgibbons, J. C., Logothetis, N. K. The Role of Attention in Binocular Rivalry as Revealed through Optokinetic Nystagmus. , (1995).
  33. Zaretskaya, N., Thielscher, A., Logothetis, N. K., Bartels, A. Disrupting Parietal Function Prolongs Dominance Durations in Binocular Rivalry. Curr. Biol. 20 (23), 2106-2111 (2010).
  34. Robinson, D. A. A Method of Measuring Eye Movemnent Using a Scieral Search Coil in a Magnetic Field. IEEE Trans. Bio-Med. Electron. 10 (4), 137-145 (1963).
  35. Kalisvaart, J. P., Goossens, J. Influence of Retinal Image Shifts and Extra-Retinal Eye Movement Signals on Binocular Rivalry Alternations. PLOS ONE. 8 (4), e61702 (2013).
  36. Frässle, S., Sommer, J., Jansen, A., Naber, M., Einhäuser, W. Binocular rivalry: frontal activity relates to introspection and action but not to perception. J. Neurosci. 34 (5), 1738-1747 (2014).
  37. Duchowski, A. T., et al. Binocular Eye Tracking in Virtual Reality for Inspection Training. Proc. 2000 Symp. Eye Track. Res. Appl. , 89-96 (2000).
  38. Hayashi, R., Tanifuji, M. Which image is in awareness during binocular rivalry? Reading perceptual status from eye movements. J. Vis. 12 (3), 5-5 (2012).
  39. van Dam, L. C. J., van Ee, R. Retinal image shifts, but not eye movements per se, cause alternations in awareness during binocular rivalry. J. Vis. 6 (11), 3-3 (2006).
  40. Maiello, G., Chessa, M., Solari, F., Bex, P. J. Simulated disparity and peripheral blur interact during binocular fusionShort Title??. J. Vis. 14 (8), 13-13 (2014).
  41. Vinnikov, M., Allison, R. S., Fernandes, S. Impact of depth of field simulation on visual fatigue: Who are impacted? and how?. Int. J. Hum.-Comput. Stud. 91, 37-51 (2016).
  42. Tsuchiya, N., Wilke, M., Frässle, S., Lamme, V. A. F. No-Report Paradigms: Extracting the True Neural Correlates of Consciousness. Trends Cogn. Sci. 19 (12), 757-770 (2015).
  43. Naber, M., Frässle, S., Einhäuser, W. Perceptual Rivalry: Reflexes Reveal the Gradual Nature of Visual Awareness. PLOS ONE. 6 (6), e20910 (2011).

Play Video

Citar este artículo
Qian, C. S., Brascamp, J. W. How to Build a Dichoptic Presentation System That Includes an Eye Tracker. J. Vis. Exp. (127), e56033, doi:10.3791/56033 (2017).

View Video