Summary

MOG35-55 诱发自身免疫性脑脊髓炎 C57BL/6 小鼠矢状面运动步态分析

Published: November 04, 2017
doi:

Summary

矢状面的运动学步态分析获得了关于如何执行运动的高度精确的信息。我们描述了这些技术的应用, 以确定小鼠的步态缺陷受自身免疫介导的鞘。这些方法也可以用来表征步态缺陷的其他小鼠模型的运动障碍。

Abstract

运动步态分析在矢状面经常被用来表征运动缺陷的多发性硬化 (MS)。我们描述了这些技术的应用, 以确定步态缺陷的 MS, 称为实验性自身免疫脑脊髓炎 (EAE) 的小鼠模型。瘫痪和运动缺陷的小鼠受 EAE 通常评估使用临床评分规模。然而, 这个规模只产生的序号数据, 提供了很少的信息的确切性质的电机赤字。EAE 疾病的严重性也评估了 rotarod 的性能, 这提供了一个一般的运动协调的措施。相比之下, 矢状面后肢的运动学步态分析产生了关于运动如何受损的高度精确的信息。为了执行这一过程, 反射标记被放置在后肢, 以检测关节运动, 而鼠标在跑步机上行走。运动分析软件用于测量行走过程中标记物的运动。然后从结果数据中推导出运动学步态参数。我们展示了这些步态参数是如何用来量化 EAE 的髋、膝和踝关节运动损伤的。这些技术可以用来更好地了解疾病的机制, 并确定潜在的治疗 MS 和其他神经退行性疾病, 损害移动性。

Introduction

步态是四肢的一系列重复运动, 用来实现运动。步态由阶梯周期组成, 分为两个阶段: 姿态阶段, 即脚在地面向后移动以推动身体向前;和摆动阶段, 脚下是离地和向前移动。步态紊乱是许多神经退行性疾病的特征, 如脊髓损伤 (SCI)、多发性硬化 (MS)、肌萎缩侧索硬化 (ALS)、帕金森病 (PD) 和中风;这些疾病的临床前鼠模型经常重述他们各自的步态损伤1。对小鼠运动的基本控制机制进行了深入的研究2,3。此外, 还有许多人类神经系统疾病的小鼠模型4。因此, 在小鼠的步态分析是一个很有吸引力的方法, 以测量多个方面的运动赤字已知的解剖关联。研究的步态在小鼠模型可能提供洞察到病理基地的运动赤字的神经退行性疾病, 并使识别的潜在治疗。

一些用于测量啮齿类动物步态的技术包括目视检查 (例如、低音鼠标缩放5和开放字段测试6) 和从腹面的步态分析7。最近, 测量后肢运动矢状面运动学的方法越来越受欢迎, 因为它们提供了有关运动执行的更多信息, 因此对步态的细微变化更敏感8,9,10,11. 为研究矢状面后肢运动而开发的运动学技术在跑步机上的9,12在 SCI、ALS、外伤性皮质损伤、中风和亨廷顿氏病8,9,10,11,13,14,15,16。相比之下, 这些技术在研究多发性硬化症小鼠模型的运动缺陷方面的应用是有限的17

实验性自身免疫脑脊髓炎 (EAE) 是 MS18最常用的小鼠模型。诱导 EAE 的两种主要方法是通过主动或被动接种。在主动 EAE, 小鼠用髓鞘抗原免疫, 导致脊髓和小脑性 T 细胞介导的 neuroinflammation 和鞘。另一方面, 被动 EAE 是通过将性 T 细胞从具有活性 EAE 的鼠标转移到一个天真的鼠标19而诱导的。如其他地方所述, 疾病病程和神经病受中枢神经系统 (CNS) 抗原和小鼠的影响20,21,22,23,24 ,25。在 EAE 实验中, 控制小鼠注射完整的弗氏的佐剂 (CFA) 没有髓鞘抗原。EAE 的特点是上升麻痹, 从尾部的弱点开始, 并可能涉及前肢, 导致共济失调和瘫痪20。我们最近的特点是 C57Bl/6 小鼠的步态变化, 受髓鞘胶质糖蛋白 35-55 (MOG35-55) 诱导的 EAE。这些研究表明, 步态分析优于经典行为分析, 因为偏离正常踝关节运动是高度相关的程度, 白物质损失在腰椎脊髓的 EAE 小鼠26。相比之下, 白物质损失与其他两种传统行为方法 (临床评分和 rotarod) 的相关性较弱,26更弱。

我们在这里描述了运动步态分析, 以检测 EAE 小鼠在跑步机上行走时矢状面的运动缺陷。五反射标记被放置在后肢, 以确定运动的臀部, 膝盖, 和踝关节在高速录像。运用运动分析软件对联合游览的运动学数据进行提取。这些技术的效用, 以量化移动赤字的 MOG35-55模型的 EAE 讨论。这些技术也适用于研究其他小鼠神经退行性疾病模型的步态缺损。

Protocol

本议定书符合加拿大动物保育委员会的准则, 并获达尔豪大学实验室动物委员会批准. 1. 构造反射标记: 使用 hand-held 孔冲床, 从一张反光纸上打出所需的小圆圈数。每只动物需要5个标记为一个单独录音;两个大的和三小的标记. 使用细剪刀, 使从周长延伸到圆心的直切口. 卸下标记的纸张背面, 以显示粘合剂表面。使用精细钳, 牢牢抓住标记和卷曲它?…

Representative Results

图 1是用于运动学步态分析的过程的示意图表示。首先, 在5解剖点上制作并放置在鼠标上的反射标记。当鼠标在跑步机上行走时, 步态会被记录下来。运动分析软件用于提取运动学数据进行后续分析。 图 2A-c表示控制 CFA 鼠标对臀部、膝盖和踝关节角度的步进周期, 记录在相隔一周的三连续记录会话中。波形之间的重叠?…

Discussion

在小鼠与 EAE, 两种最常用的测量运动缺陷的方法是临床评分和秋季潜伏期从 rotarod27,28。这些技术有几个局限性。虽然方便和广泛使用, 临床评分是有限的只产生序号水平的数据, 这意味着, 临床评分之间的差异的大小是未知的。临床评分也因无法提供有关电机缺陷性质的精确信息而遭受损失。rotarod 试验提高了临床评分的一些局限性, 但只测量一般的运动…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

我们要感谢希德 Chedrawe 的技术援助与拍摄。这项工作得到了加拿大 MS 协会 (EGID 2983) 的资助。

Materials

Camera Nikon Nikon D750 Used to film the video
Reflective tape B&L Engineering MKR-Tape-2
Fine scissors Fine Science Tools 15023-10
Forceps Fine Science Tools 11252-20
Glue gun Craftsmart E231647
scalpel handle #4 Roboz R5-9884
Scalpel Blade No.10 Feather 2020-12
C57BL/6 mice Charles River Laboratories
Anesthetic machine EZ Anesthesia EZ-AF9000 Auto Flow System
Recirculating water heating blanket Androit HTP-1500
topical eye lubricant Refresh DIN00210889
Shaver Oster 78997-010
High speed camera Fastec Fastec IL3-100
High power light Smith Victor Corporation Model 700 SG (600 Watt quartz light, 120 Volts)
Light Stand Promaster LS1
Treadmill Custom built at the Zoological Institute, University of Cologne
Microsoft Excel 2016 Microsoft Version 2016
KinemaJ Nicolas Stifani This is a script generated for use with ImageJ
KinemaR Nicolas Stifani This is a script generated for use with Rstudio
Vicon Motus Vicon Motus Version 9.00
GraphPad Prism GraphPad Version 6.00

Referencias

  1. Giladi, N., Horak, F. B., Hausdorff, J. M. Classification of gait disturbances: distinguishing between continuous and episodic changes. Mov Disord. 28 (11), 1469-1473 (2013).
  2. Kiehn, O. Decoding the organization of spinal circuits that control locomotion. Nat Rev Neurosci. 17 (4), 224-238 (2016).
  3. Akay, T., Tourtellotte, W. G., Arber, S., Jessell, T. M. Degradation of mouse locomotor pattern in the absence of proprioceptive sensory feedback. Proc Natl Acad Sci U S A. 111 (47), 16877-16882 (2014).
  4. Hafezparast, M., Ahmad-Annuar, A., Wood, N. W., Tabrizi, S. J., Fisher, E. M. Mouse models for neurological disease. Lancet Neurol. 1 (4), 215-224 (2002).
  5. Basso, D. M., et al. Basso Mouse Scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains. J Neurotrauma. 23 (5), 635-659 (2006).
  6. Tatem, K. S., et al. Behavioral and locomotor measurements using an open field activity monitoring system for skeletal muscle diseases. J Vis Exp. (91), e51785 (2014).
  7. Hetze, S., Romer, C., Teufelhart, C., Meisel, A., Engel, O. Gait analysis as a method for assessing neurological outcome in a mouse model of stroke. J Neurosci Methods. 206 (1), 7-14 (2012).
  8. Preisig, D. F., et al. High-speed video gait analysis reveals early and characteristic locomotor phenotypes in mouse models of neurodegenerative movement disorders. Behav Brain Res. 311, 340-353 (2016).
  9. Leblond, H., L’Esperance, M., Orsal, D., Rossignol, S. Treadmill locomotion in the intact and spinal mouse. J Neurosci. 23 (36), 11411-11419 (2003).
  10. Ueno, M., Yamashita, T. Kinematic analyses reveal impaired locomotion following injury of the motor cortex in mice. Exp Neurol. 230 (2), 280-290 (2011).
  11. Zorner, B., et al. Profiling locomotor recovery: comprehensive quantification of impairments after CNS damage in rodents. Nat Methods. 7 (9), 701-708 (2010).
  12. Pearson, K. G., Acharya, H., Fouad, K. A new electrode configuration for recording electromyographic activity in behaving mice. J Neurosci Methods. 148 (1), 36-42 (2005).
  13. Balkaya, M., Krober, J. M., Rex, A., Endres, M. Assessing post-stroke behavior in mouse models of focal ischemia. J Cereb Blood Flow Metab. 33 (3), 330-338 (2013).
  14. Akay, T. Long-term measurement of muscle denervation and locomotor behavior in individual wild-type and ALS model mice. J Neurophysiol. 111 (3), 694-703 (2014).
  15. Taylor, T. N., Greene, J. G., Miller, G. W. Behavioral phenotyping of mouse models of Parkinson’s disease. Behav Brain Res. 211 (1), 1-10 (2010).
  16. Chen, K., et al. Differential Histopathological and Behavioral Outcomes Eight Weeks after Rat Spinal Cord Injury by Contusion, Dislocation, and Distraction Mechanisms. J Neurotrauma. 33 (18), 1667-1684 (2016).
  17. de Bruin, N. M., et al. Multiple rodent models and behavioral measures reveal unexpected responses to FTY720 and DMF in experimental autoimmune encephalomyelitis. Behav Brain Res. 300, 160-174 (2016).
  18. Steinman, L., Zamvil, S. S. How to successfully apply animal studies in experimental allergic encephalomyelitis to research on multiple sclerosis. Ann Neurol. 60 (1), 12-21 (2006).
  19. Emerson, M. R., Gallagher, R. J., Marquis, J. G., LeVine, S. M. Enhancing the ability of experimental autoimmune encephalomyelitis to serve as a more rigorous model of multiple sclerosis through refinement of the experimental design. Comp Med. 59 (2), 112-128 (2009).
  20. Bittner, S., Afzali, A. M., Wiendl, H., Meuth, S. G. Myelin oligodendrocyte glycoprotein (MOG35-55) induced experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. J Vis Exp. (86), (2014).
  21. Beeton, C., Garcia, A., Chandy, K. G. Induction and clinical scoring of chronic-relapsing experimental autoimmune encephalomyelitis. J Vis Exp. (5), e224 (2007).
  22. Barthelmes, J., et al. Induction of Experimental Autoimmune Encephalomyelitis in Mice and Evaluation of the Disease-dependent Distribution of Immune Cells in Various Tissues. J Vis Exp. (111), (2016).
  23. Shaw, M. K., Zhao, X. Q., Tse, H. Y. Overcoming unresponsiveness in experimental autoimmune encephalomyelitis (EAE) resistant mouse strains by adoptive transfer and antigenic challenge. J Vis Exp. (62), e3778 (2012).
  24. Stromnes, I. M., Goverman, J. M. Passive induction of experimental allergic encephalomyelitis. Nat Protoc. 1 (4), 1952-1960 (2006).
  25. Stromnes, I. M., Goverman, J. M. Active induction of experimental allergic encephalomyelitis. Nat Protoc. 1 (4), 1810-1819 (2006).
  26. Fiander, M. D., Stifani, N., Nichols, M., Akay, T., Robertson, G. S. Kinematic gait parameters are highly sensitive measures of motor deficits and spinal cord injury in mice subjected to experimental autoimmune encephalomyelitis. Behav Brain Res. 317, 95-108 (2017).
  27. Jones, M. V., et al. Behavioral and pathological outcomes in MOG 35-55 experimental autoimmune encephalomyelitis. J Neuroimmunol. 199 (1-2), 83-93 (2008).
  28. van den Berg, R., Laman, J. D., van Meurs, M., Hintzen, R. Q., Hoogenraad, C. C. Rotarod motor performance and advanced spinal cord lesion image analysis refine assessment of neurodegeneration in experimental autoimmune encephalomyelitis. J Neurosci Methods. 262, 66-76 (2016).
  29. Sasaki, M., Lankford, K. L., Brown, R. J., Ruddle, N. H., Kocsis, J. D. Focal experimental autoimmune encephalomyelitis in the Lewis rat induced by immunization with myelin oligodendrocyte glycoprotein and intraspinal injection of vascular endothelial growth factor. Glia. 58 (13), 1523-1531 (2010).
  30. Merkler, D., Ernsting, T., Kerschensteiner, M., Bruck, W., Stadelmann, C. A new focal EAE model of cortical demyelination: multiple sclerosis-like lesions with rapid resolution of inflammation and extensive remyelination. Brain. 129 (Pt 8), 1972-1983 (2006).
  31. Franco-Pons, N., Torrente, M., Colomina, M. T., Vilella, E. Behavioral deficits in the cuprizone-induced murine model of demyelination/remyelination. Toxicol Lett. 169 (3), 205-213 (2007).
  32. Goldberg, N. R., Hampton, T., McCue, S., Kale, A., Meshul, C. K. Profiling changes in gait dynamics resulting from progressive 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced nigrostriatal lesioning. J Neurosci Res. 89 (10), 1698-1706 (2011).
check_url/es/56032?article_type=t

Play Video

Citar este artículo
Fiander, M. D., Chedrawe, M. A., Lamport, A., Akay, T., Robertson, G. S. Sagittal Plane Kinematic Gait Analysis in C57BL/6 Mice Subjected to MOG35-55 Induced Experimental Autoimmune Encephalomyelitis. J. Vis. Exp. (129), e56032, doi:10.3791/56032 (2017).

View Video