We describe here a protocol for microinjection in the rodent brain that uses quartz needles. These needles do not produce detectable tissue damage and ensure reliable delivery even in deep regions. Moreover, they can be adapted to research needs by personalized designs and can be re-used.
Microinjections have been used for a long time for the delivery of drugs or toxins within specific brain areas and, more recently, they have been used to deliver gene or cell therapy products. Unfortunately, current microinjection techniques use steel or glass needles that are suboptimal for multiple reasons: in particular, steel needles may cause tissue damage, and glass needles may bend when lowered deeply into the brain, missing the target region. In this article, we describe a protocol to prepare and use quartz needles that combine a number of useful features. These needles do not produce detectable tissue damage and, being very rigid, ensure reliable delivery in the desired brain region even when using deep coordinates. Moreover, it is possible to personalize the design of the needle by making multiple holes of the desired diameter. Multiple holes facilitate the injection of large amounts of solution within a larger area, whereas large holes facilitate the injection of cells. In addition, these quartz needles can be cleaned and re-used, such that the procedure becomes cost-effective.
Microinjections have been used for a long time for the delivery of pharmacologically active compounds to modulate neuronal activity in specific brain areas. In addition, they have been used to inject toxins near particular neuronal populations, to mimic neurodegenerative events characteristic of certain diseases, for example 6-hydroxy-dopamine in the nigrostriatal dopamine system to mimic Parkinson's disease1,2 or the immunotoxin 192 IgG saporin to lesion the cholinergic system3. More recently, microinjection procedures have been used to deliver viral vectors or cells grafts for gene or cell therapy of experimental brain disorders4,5.
The classical type of needles employed in these studies is made of stainless steel. Although easy and practical to use, steel needles have a number of problems6: they are relatively large and may cause tissue damage, with leakage of the blood-brain barrier and activation of astrocytes; moreover, they may produce coring of brain tissue that gets into the needle creating an obstacle or even completely avoiding flow of the desired solution. More recently, glass needles prepared ad hoc from capillaries have been introduced in use7,8. These do not cause significant tissue damage nor astrocyte activation, but are relatively flexible and may bend when introduced in deep structures, reducing the accuracy of localization (personal observations).
There is therefore a need to reduce as much as possible damage (especially when performing experiments to heal damage) while increasing accuracy and reproducibility (i.e., ensure that all solution is delivered and ensure correct localization). Moreover, it would be desirable to use different needle designs to ensure optimal distribution of the injected solution in brain areas with varying geometries. In this article, we describe a protocol to prepare and use quartz needles for microinjections in the rodent brain. Due to the high melting point, quartz capillaries cannot be pulled on a conventional puller and therefore, have not been used in the past to generate needles. Quartz, however, offers some important advantages over glass, in particular high rigidity and break resistance9. Because of their rigidity, quartz needles are ideally suited for injections into ventral brain regions. Because of their high resistance to breakage they can be modeled to include multiple holes, obtaining designs that may prove most effective even when targeting brain regions with complex geometries10.
All experimental protocols were approved by the University of Ferrara Ethical Committee for Animal Experimentation and by the Italian Ministry of Health. The ARRIVE (Animal Research: Reporting In Vivo Experiments11) guidelines have been followed.
1. Preparation of Quartz Needles
2. Procedure
We compared damage induced by direct microinjection in the rat dorsal hippocampus and striatum using a quartz needle (60 µM external diameter tip; one 20 µM diameter side hole; type C, Figure 1) compared with two classic, 26 G blunt end and 30 G bevel edge stainless steel needles. To this aim, we injected 2 µL of aCSF in the right and left dorsal hippocampus and striatum using respectively the quartz and the steel needle and, 48 h after injection, we evaluated tissue damage using the Hematoxylin-Eosin (HE) staining. We chose an early time point after injection to better appreciate the acute mechanical damage produced by the different needles (in time, tissue repair mechanisms could obscure the initial damage)7.
Following the protocol described above, the quartz needle did not produce any detectable damage and a barely detectable needle track, whereas brain regions injected through the 26 G steel blunt end needle exhibited a marked damage (Figure 3). The 30 G bevel angle (30 °) stainless steel needle induced a more limited, yet clearly detectable brain lesion both in the striatum (Figure 4B) and in the dorsal hippocampus (Figure 5). To prove that the injection of aCSF was equally successful with both needles, in a separate set of experiments we injected 2 µL of Trypan Blue (Figure 4A). Importantly, all retrieved quartz needles were perfectly intact, i.e., we never observed any damage due to the insertion maneuvers.
Figure 1: Microscopic image of a quartz needle tip, showing different diameters of tip and holes employed for injection of fluids. Low magnification picture in (A) and higher magnification in (B) and (C). The needle may be prepared in different manners (different length, hole numbers and hole dimensions) according to the anatomy of brain region, the spreading goal and the viscosity of the solution, as illustrated in (B) and (C). Notice the smooth cut of the holes and tip obtained using low power laser microdissection. Please click here to view a larger version of this figure.
Figure 2: Set up for microinjections. Picture showing the kit used to secure the quartz pipette (left) and the stainless steel needle (right) to the stereotactic micropositioner. Please click here to view a larger version of this figure.
Figure 3: Coronal sections showing less damage using the quartz needle. Coronal sections (8 µm thickness) of rat brains at the level of the striatum showing a comparison between the damage produce by injection of 2 µL aCSF using a quartz needle like the one shown in Figure 1C (left side) and a 26 G blunt end stainless steel needle (right side). Some damage was produced in the cortex on the side of the quartz needle, due to improperly deeply drilling the skull. These images, taken from two different animals, are representative of all 5 animals included in the experiment (scale bar = 500 µm). Please click here to view a larger version of this figure.
Figure 4: Spreading and tissue damage. (A) Distribution of Trypan blue injected in the striatum with a quartz needle (left), as compared with a 30 G bevel edge stainless steel needle (right). (B) Coronal section of rat brain at the level of the striatum, stained with HE showing a comparison between a quartz needle and a 30 G bevel edge stainless steel needle (scale bar = 500 µm). In the boxes (left and right), a higher magnification of the damage (scale bar = 200 µm, 10X). These images are representative of 5 animals included in the experiment. Please click here to view a larger version of this figure.
Figure 5: Damage induced by a quartz needle and a 26 G bevel edge stainless steel needle at the level of dorsal hippocampus. The two cases shown here are representative of 5 animals included in the experiment (scale bar = 400 µm). Please click here to view a larger version of this figure.
The technique described in this article fulfills the needs outlined in the Introduction for optimizing microinjections that are performed for various purposes12. The needles described here reduce damage to a minimum, essentially non-detectable level; at variance with glass needles (that are prone to bend), quartz needles are rigid and ensure a reliable hit of the desired brain region even in deep coordinates. Moreover, the side hole ensures delivery of the solution even if the tip hole gets occluded during insertion in the brain tissue.
Limitations and alternatives. Due to high melting point, quartz capillaries cannot be pulled on a conventional puller, i.e., they require access to costly equipment. Glass capillaries are equally good in terms of avoiding damage to tissue, but less reliable for injections in deep structures and more fragile (i.e., less flexible in terms of design). However, if the goal is injection in superficial structures like the cortex or the dorsal hippocampus and there is no requirement for multiple holes that would increase the risk of needle breaking, glass needles certainly represent a valid and cheap alternative.
A limitation of both quartz and glass needles is that they do not permit multiple injections at different time points, like stainless steel needles coupled to guide cannulas. Therefore, steel needles remain the best option for these applications, with the advice to avoid relatively large (26 G) and/or blunt edge needles.
Critical steps in the protocol. Overall, the protocol described above is very straightforward and should not be difficult to use for any researcher experienced in microinjections. Once the needles are made available, the regular precautions employed for anesthesia, surgery, slow insertion and removal of the needle, constant and slow rate of infusion regulated by a minipump, will ensure good and reproducible results.
Advantages and further developments. As stated above, the key advantage of quartz needles is to couple minimal mechanical damage with the possibility to personalize the design of the needle. We prepared needles with multiple holes and different diameters, which can be adapted to the specific experimental needs. For example, different diameters may be needed to inject viral vectors and cells compared with drugs or toxins; multiple holes may be useful to ensure injection of larger amounts of solution within a larger area and may become especially useful for difficult geometry brain areas. The great versatility of this technique can be also exploited to optimize the spread in the tissue of viral vectors for gene therapy or cells. Indeed, we use these needles to inject viral vectors or cells.
Other advantages include the possibility to re-use the needles. To do so, needles can be cleaned with ethanol and bleach to remove the solution and possible tissue residue. The repeated use of a single needle can make the procedure cost-effective in spite of the relatively high cost of production.
The authors have nothing to disclose.
This work has been supported by a grant from the European Community [FP7-PEOPLE-2011-IAPP project 285827 (EPIXCHANGE)].
Quartz capillaries | Sutter Instruments, Novato, CA USA | Q100-50-10 | Without filament |
Puller | Sutter | P2000 | |
Micropipette storage jar | World Precision Instruments (WPI), Sarasota, FL, USA | E210 | |
Laser microdissector | Leica Microsystems, Wetzlar, Germany | LMD6500 | |
Hamilton syringe | Hamilton ILS Innovative Labor Systeme GmbH, StŸtzerbach, Germany | 19138-U | |
Microinfusion pump | Univentor, Zejtun, Malta | Model 864 | |
Manual microinjection pump kit | WPI | Item#: MMP-KIT | Kit allowing for micropipettes to be securely mounted to the stereotactic frame |
Precision Drill | Proxxon | 28510 MicroMot 50/E | Ball bearing drive shaft with variable speed |
Artficial Cerebral Spinal Fluid | Tocris | 3525 | |
Needles 26 G Blunt and 30 G Bevel | Hamilton | 26 G Blunt: 19138-U 30 G Bevel: 20757 |
|
Microtome | Leica, Germany | LEICA RM212RT |