Este protocolo describe un método para aislar y cultivar rudimentos metanefricos de embriones de ratón.
El objetivo de este protocolo es describir un método para la disección, aislamiento y cultivo de rutinas metanefricas de ratón.
Durante el desarrollo del riñón de los mamíferos, los dos tejidos progenitores, el brote ureteral y el mesénquima metanéfrico, se comunican y inducen recíprocamente mecanismos celulares para formar eventualmente el sistema colector y los nefrones del riñón. A medida que los embriones de mamíferos crecen intrauterinos y por lo tanto son inaccesibles para el observador, se ha desarrollado un cultivo de órganos. Con este método, es posible estudiar las interacciones epiteliales-mesenquimales y el comportamiento celular durante la organogénesis renal. Además, se puede investigar el origen de las malformaciones congénitas del riñón y del tracto urogenital. Después de una disección cuidadosa, los rudimentos metanefricos se transfieren a un filtro que flota sobre el medio de cultivo y puede mantenerse en una incubadora de cultivo celular durante varios días. Sin embargo, hay que tener en cuenta que las condiciones sonArtificial y podría influir en el metabolismo en el tejido. Además, la penetración de sustancias de ensayo podría estar limitada debido a la matriz extracelular y la membrana basal presentes en el explante.
Una ventaja principal de la cultura de órganos es que el experimentador puede obtener acceso directo al órgano. Esta tecnología es barata, sencilla y permite un gran número de modificaciones, como la adición de sustancias biológicamente activas, el estudio de variantes genéticas y la aplicación de técnicas de imagen avanzada.
The mammalian kidney is derived from two primordial structures with mesodermal origin: the tubular epithelial ureteric bud and the metanephric mesenchyme. During nephrogenesis, the ureteric bud invades the metanephric mesenchyme and branches to form the collecting system. The metanephric mesenchyme gives rise to the epithelial elements of the nephrons. These processes occur in a precisely timed and spatially coordinated manner and are initiated by reciprocal inductive mechanisms. Both tissue components communicate and affect the other’s cell morphogenesis.
In the 1920s, it was Boyden who performed the in vivo obstruction of the mesonephric duct in chicken, providing the first indication of inductive interactions as separated nephric blastema fail to differentiate1. At about the same time, the first successful attempts to culture chicken nephric rudiments in a hanging drop were published. Subsequently, the organ culture was developed to study tissue interactions in mammalian organogenesis. In the 1950s, Grobstein developed a technique in which metanephric rudiments could be cultured on a filter. This technique was modified by Saxén, who placed the filter on a Trowell-type screen in a culture dish1. Over the years, many modifications and applications for organ culture have emerged. The method described here is based on Saxén’s technique but is simplified, as the filters float free on the medium and the diameter of the culture well only slightly exceeds the diameter of the filter, limiting unwanted movement of the filter.
Whole-organ culture is a classical, cheap, and simple but powerful tool to investigate cellular processes and intercellular communication during organogenesis. Organ culture allows for treatment with biological agents, such as growth factors, antibodies, antisense oligonucleotides, viruses, and peptides, as well as with pharmaceutical compounds and other chemicals. Also, gene function may be studied using explants derived from genetically modified mice or using inducible gene inactivation technology, such as the Cre-loxP system. This allows for the study of genetic mutations that cause embryonic lethality prior to the development of the kidney. Organ culture can also be combined with fluorescent tagging for gene function or lineage tracing and modern imaging techniques, which enable real-time monitoring of cell behavior2.
In the specific example provided here, the effect of EphrinB2-activated Eph-receptor signaling on the branching morphology of the ureteric bud was investigated. The morphology of the EphA4/EphB2 double-knockout mice suggested several severe defects in kidney development, which were detectable as early as embryonic day 11 (E11) and involved the ureteric bud, the ureter, and the common nephric duct3. Signaling via Eph receptors requires the clustering of the ligand-receptor dimer4. To over-activate Eph signaling, the kidney rudiments from E11.5 mouse embryos were cultured in the presence of clustered recombinant EphrinB2-Fc. EphrinB2 is a known ligand for the EphA4 receptor, which is expressed in the ureteric bud tips3.
Este manuscrito describe un método para aislar el desarrollo de metanfric anlagen del embrión de ratón y para cultivar los órganos rudiments. Este método es una técnica estándar, desarrollada por Grobstein 8 y Saxén 9 , 10 , y fue adaptada y modificada por muchos otros 11 , 12 . El éxito del método depende principalmente de la duración de la disección, ya que la superv…
The authors have nothing to disclose.
Los autores agradecen a Leif Oxburgh y Derek Adams por compartir generosamente sus conocimientos, Leif Oxburgh por los útiles comentarios sobre el manuscrito, y Stefan Wölfl y Ulrike Müller por su apoyo técnico y Saskia Schmitteckert, Julia Gobbert, Sascha Weyer y Viola Mayer por su ayuda en el laboratorio. Este trabajo fue apoyado por Desarrollo, La Empresa de Biólogos (a CP).
DMEM/F-12 | Thermo Fisher Scientific | 21331020 | |
Penicillin-Streptomycin (10,000 U/mL) | Thermo Fisher Scientific | 15140148 | |
GlutaMAX Supplement | Thermo Fisher Scientific | 35050061 | |
DPBS, calcium, magnesium | Thermo Fisher Scientific | 14040117 | use for dissection |
holo-Transferrin human | Sigma-Aldrich | T0665 | |
Insulin-Transferrin-Selenium (ITS -G) (100X) | Thermo Fisher Scientific | 41400045 | |
Paraformaldehyde | Sigma-Aldrich | 158127 | |
Amphotericin B solution | Sigma-Aldrich | A2942 | |
Triton X-100 | Sigma-Aldrich | X100 | |
Sodium azide | Sigma-Aldrich | S8032 | |
Thimerosal | Sigma-Aldrich | T5125 | |
Propyl gallate | Sigma-Aldrich | 2370 | |
Mowiol 4-88 | Sigma-Aldrich | 81381 | |
Glycerol | Sigma-Aldrich | G5516 | |
Biotinylated Dolichorus Biflorus Agglutinin | Vector Laboratories | B-1035 | |
Alexa488 conjugated Streptavidin | Jackson Immuno Research | 016-540-084 | |
Recombinant Mouse Ephrin-B2 Fc Chimera Protein, CF | R&D Systems | 496-EB | |
Recombinant Human IgG1 Fc, CF | R&D Systems | 110-HG-100 | |
Goat Anti-Human IgG Fc Antibody | R&D Systems | G-102-C | |
Phosphate buffered saline tablets | Sigma-Aldrich | P4417 | use for fixation and immunostaining |
Dumont #5, biologie tips, INOX, 11cm |
agnthos.se | 0208-5-PS | 2 pairs of forceps are needed |
Iris scissors, straight, 12cm | agnthos.se | 03-320-120 | |
Dressing Forceps, straight, delicate, 13cm |
agnthos.se | 08-032-130 | |
Petri dishes Nunclo Delta treated | Thermo Fisher Scientific | 150679 | |
TMTP01300 Isopore Membrane Filter, polycarbonate, Hydrophilic, 5.0 µm, 13 mm, white, plain | MerckMillipore | TMTP01300 | |
Nunclon Multidishes 4 wells, flat bottom |
Sigma-Aldrich | D6789-1CS | |
Microscope cover glass24x50mm thickn. No.1.5H 0.17+/-0.005mm | nordicbiolabs | 107222 | |
Cover glasses No.1.5, 18x18mm | nordicbiolabs | 102032 | |
Slides ~76x26x1, 1/2-w. ground plain | nordicbiolabs | 1030418 | |
VWR Razor Blades | VWR | 55411-055 | |
50 mL centrifuge tubes | Sigma-Aldrich | CLS430828 | |
15 mL centrifuge tubes | Sigma-Aldrich | CLS430055 | |
Whatman prepleated qualitative filter paper, Grade 113V, creped | Sigma-Aldrich | WHA1213125 | |
Fixed stage research mircoscope | Olympus | BX61WI | |
Black 6 inbred mice, male, C57BL/6NTac | Taconic | B6-M | |
Black 6 inbred mice,female, C57BL/6NTac | Taconic | B6-F | |
Greenough Stereo Microscope | Leica | Leica S6 E |