Los ensayos de competición de péptidos se usan ampliamente en una variedad de experimentos moleculares e inmunológicos. Este documento describe un método detallado para un ensayo de quinasa que compite con oligopéptido in vitro y los procedimientos de validación asociados, que pueden ser útiles para encontrar sitios de fosforilación específicos.
La fosforilación de proteínas en sitios específicos determina su conformación e interacción con otras moléculas. Por lo tanto, la fosforilación proteica afecta las funciones biológicas y las características de la célula. Actualmente, el método más común para descubrir los sitios de fosforilación es el análisis por cromatografía líquida / espectrometría de masas (LC / MS), un método rápido y sensible. Sin embargo, los restos de fosfato relativamente lábiles se liberan a menudo de los fosfopéptidos durante la etapa de fragmentación, que a menudo produce señales falsas negativas. En tales casos, un ensayo de quinasa in vitro tradicional utilizando mutantes dirigidos sería más preciso, pero este método es laborioso y requiere mucho tiempo. Por lo tanto, puede ser ventajoso un método alternativo que utiliza la competencia de péptidos. El motivo de reconocimiento consenso de la proteína quinasa activada por monofosfato de adenosina 5 '(AMPK) se ha establecido 1 y se validó usando un culo de biblioteca de péptidos de exploración posicionalAy 2 Por lo tanto, los sitios de fosforilación de AMPK para un nuevo sustrato podrían predecirse y confirmarse mediante los ensayos de competición de péptidos. En este informe, describimos los pasos detallados y procedimientos para el ensayo de quinasa competitiva de oligopéptido in vitro ilustrando la fosforilación del factor 2 relacionado con el eritrodo 2 del factor nuclear de AMPK (Nrf2). Para autenticar el sitio de fosforilación, llevamos a cabo un ensayo de quinasa in vitro secuencial utilizando un mutante específico del sitio. En general, el ensayo de competición de péptidos proporciona un método para detectar múltiples sitios potenciales de fosforilación e identificar sitios para validación por los mutantes del sitio de fosforilación.
La fosforilación de proteínas en un residuo específico juega un papel importante en una amplia gama de procesos celulares. Por lo tanto, la comprensión de las redes de señalización requiere la identificación de sitios específicos de fosforilación. Además, el sitio de fosforilación determina el efecto sobre la función de la proteína porque los dominios individuales dentro de una proteína poseen estructuras y funciones diferentes. La actividad del Factor 2 del factor nuclear eritroide 2 (Nrf2), un factor clave de transcripción antioxidante, es regulada bidireccionalmente a través de la fosforilación en diferentes sitios. Nuestros estudios se han centrado en las quinasas que catalizan la fosforilación de Nrf2. La respuesta al estrés de Nrf2 frente a la exposición oxidativa se produce rápidamente, principalmente a través de la fosforilación en la serina 40 y mediada por la proteína quinasa C (PKC) -δ, que activa Nrf2 3 , 4 . Por el contrario, Fyn cataliza la fosforilación inhibitoria de Nrf2 en la tirosina 568 para el control estricto de la actividad 5 .
El método más común utilizado para descubrir sitios de fosforilación es el análisis de cromatografía líquida / espectrometría de masas (LC / MS). Los datos de mapeo de sitios de fosforilación rápidos y altamente sensibles pueden generarse de esta manera; Sin embargo, tiene varias limitaciones técnicas, a menudo generando señales falsas-negativas. La mala cobertura de la secuencia ocurre con frecuencia en el análisis LC / MS. Para identificar los sitios de fosforilación, la información sobre la máxima cobertura de aminoácidos de una proteína es necesaria [ 6] . La proteólisis de la proteína de interés con varias proteasas durante la etapa de digestión puede ser de ayuda para mejorar la cobertura de la secuencia. Otro obstáculo para la identificación de los residuos de fosforilación es la fácil pérdida de ácido fosfórico que se observa con frecuencia para los péptidos fosforilados con serina y treonina 6,7. Los restos de fosfato lábiles son a menudoLiberado de fosfopéptidos durante el proceso de fragmentación 7 . La segunda opción cuando se buscan sitios de fosforilación está usando un método de microarrays de péptidos. Es posible detectar los sitios diana de cinasa usando un chip de microarrays que contiene fragmentos peptídicos derivados de una proteína de interés. Sin embargo, debido al requisito de equipo para la producción y detección de un chip de microarrays, el método de microarrays de péptidos se considera largo y costoso.
Para superar estos desafíos, se puede usar un ensayo de quinasa competitiva de oligopéptido in vitro para una proteína quinasa con motivos de reconocimiento conocidos. Si se establece el motivo de reconocimiento de consenso de una quinasa, se pueden predecir sitios de fosforilación putativos de un sustrato candidato, y se puede validar la autenticidad de los sitios. El método más convincente para este procedimiento es mostrar la abrogación de la fosforilación en una proteína mutante en la que la predictaD sustituido con un aminoácido no fosforilable ( es decir, serina o treonina a alanina, tirosina a fenilalanina). Sin embargo, la producción y aislamiento de proteínas mutantes lleva mucho tiempo. Como alternativa en la fase inicial de la investigación, el ensayo competitivo de la cinasa peptídica es sencillo y conveniente. Aquí, describimos un protocolo para un ensayo de competición de péptidos in vitro y para la validación del sitio de fosforilación.
Como una manera sencilla y conveniente de evaluar la autenticidad de los sitios de fosforilación predichos mediados por AMPK, aquí se describe un ensayo de quinasa in vitro que puede usarse para descubrir un sitio específico de fosforilación utilizando péptidos competitivos y verificarlo usando un mutante específico de sitio . Los datos representativos obtenidos del ensayo de actividad de AMPK competitivo in vitro coincidían con los resultados de un ensayo usando una proteína mutante d…
The authors have nothing to disclose.
Este trabajo fue apoyado por la Fundación Nacional de Investigación de Corea subvención financiada por el gobierno de Corea (MSIP) (No. 2015R1A2A1A10052663 y No. 2014M1A3A3A02034698).
HEPES | Thermo Fisher Scientific, Waltham, MA | 15630 | |
MgCl2 | Sigma-Aldrich, St. Louis, MO | 208337 | |
EGTA | Sigma-Aldrich, St. Louis, MO | E3889 | |
DTT | Sigma-Aldrich, St. Louis, MO | D9779 | |
β-glycerophosphate | Sigma-Aldrich, St. Louis, MO | G9422 | |
Na3VO4 | Sigma-Aldrich, St. Louis, MO | 450243 | |
Protease inhibitor cocktail | Calbiochem, Nottingham, UK | 539134 | |
ATP | Sigma-Aldrich, St. Louis, MO | A2383 | |
AMP | Sigma-Aldrich, St. Louis, MO | A1752 | |
AMPK | Upstate Biotechnology, Lake Placid, NY | 14-840 | |
Nrf2 (WT) | Abnova, Taipei City, Taiwan | H00004780-P01 | |
[γ-32P]-ATP | PerkinElmer Life and Analytical Sciences, Waltham, MA | NEG502A | |
EZblue staining reagent | Sigma-Aldrich, St. Louis, MO | G1041 | |
Pfu turbo DNA polymerase | Agilent Technologies, Santa Clara, CA | 600250 | |
dNTP mix | Agilent Technologies, Santa Clara, CA | 200415-51 | Avoid multiple thaw and freezing cycle |
DpnI | New England Biolabs, Ipswich, MA | R0176S | |
LB broth | Duchefa Biochemie BV, Haarlem, Netherlands | L1704 | |
Ampicillin | Affymetrix, Santa Clara, CA | 11259 | |
Agarose LE | iNtRON Biotechnology, Sungnam, South Korea | 32034 | |
HiYield Plus Gel/PCR DNA Mini Kit | Real Biotech Corporation, Taipei, Taiwan | QDF100 | |
Coomassie Brilliant Blue R-250 | Bio-Rad Laboratories, Hercules, CA | 161-0400 | |
Bovine Serum Albumin | Bovogen Biologicals, Victoria, Australia | BSA100 | |
Glutathione Sepharose 4B | GE Healthcare, Marlborough, MA | 17-0756-01 | |
Acetic Acid glacial | Duksan pure chemicals, Ansan, South Korea | ||
Methyl alcohol | Daejung Chemicals & Metals, Siheung, South Korea | 5558-4410 | |
Name | Company | Catalog Number | Comments |
Typhoon FLA 7000 | GE Healthcare, Marlborough, MA | 28-9558-09 | |
SDS-PAGE kit | Bio-Rad Laboratories, Hercules, CA | 1658001FC | |
Vacuum pump | Bio-Rad Laboratories, Hercules, CA | 165-178 | |
Gel dryer | Bio-Rad Laboratories, Hercules, CA | 165-1746 | |
Dancing shaker | FINEPCR, Seoul, Korea | CR300 | The machine is needed for washing step |
PCR machine | Bio-Rad Laboratories, Hercules, CA | T100 | |
Incubator/shakers | N-BIOTEK, GyeongGi-Do, Korea | NB-205L | |
Microcentrifuges | LABOGENE, Seoul, Korea | 1730R | |
Chromatography columns | Bio-Rad Laboratories, Hercules, CA | 732-1010 |