Dit protocol toont een fluorescentie gebaseerde methode om de vasculatuur te visualiseren en de complexiteit ervan te kwantificeren in Xenopus tropicalis . Bloedvaten kunnen na de injectie van een fluorescerende kleurstof in het kloppende hart van een embryo worden gedetecteerd na genetische en / of farmacologische manipulaties om in vivo cardiovasculaire ontwikkeling te bestuderen.
Bloedvaten leveren zuurstof en voedingsstoffen door het hele lichaam, en de vorming van het vaatnetwerk is onder strakke ontwikkelingsregeling. De efficiënte in vivo visualisatie van bloedvaten en de betrouwbare kwantificering van hun complexiteit zijn essentieel voor het begrijpen van de biologie en ziekte van het vaatnetwerk. Hier geven we een gedetailleerde methode om bloedvaten te visualiseren met een in de handel verkrijgbare fluorescerende kleurstof, menselijk plasma geacetyleerd laagdichtheid lipoproteïne DiI complex (DiI-AcLDL) en om hun complexiteit te kwantificeren in Xenopus tropicalis . Bloedvaten kunnen worden gemerkt door een eenvoudige injectie van DiI-AcLDL in het kloppende hart van een embryo, en bloedvaten in het hele embryo kunnen worden afgebeeld in levende of vaste embryo's. Gecombineerd met genstoornis door de gerichte microinjectie van nucleïnezuren en / of de badtoepassing van farmacologische reagentia, kunnen de rollen van een gen of van een signaalweg op vasculaire ontwikkeling in vivo zijnBinnen een week gestegen zonder aan te vullen tot geavanceerde genetisch gemanipuleerde dieren. Vanwege het goed gedefinieerde veneuze systeem van Xenopus en zijn stereotiepe angiogenese kan het spruiten van bestaande vaten, vatencomplexiteit efficiënt worden gekwantificeerd na verstoringsexperimenten. Dit relatief eenvoudige protocol dient als een gemakkelijk toegankelijk instrument op diverse gebieden van cardiovasculair onderzoek.
Vasculogenese, de vorming van nieuwe bloedvaten uit pasgeboren endotheelcellen, en angiogenese, de vorming van nieuwe vaten uit bestaande vaten, zijn twee verschillende processen die de embryonale vasculatuur vormen 1 . Elke dysregulatie bij deze processen resulteert in verschillende hartziekten en structurele abnormaliteiten van vaten. Bovendien is tumorgroei geassocieerd met onbeheerde vatengroei. Als zodanig zijn moleculaire mechanismen die onderliggend zijn aan vasculogenese en angiogenese het onderwerp van intensief onderzoek 2 .
Xenopus en zebravis zijn aantrekkelijke gewervelde modellen voor vasculogenese en angiogenese studies, om verschillende redenen. Ten eerste zijn hun embryo's klein; Daarom is het relatief eenvoudig om de hele vasculatuur te bekijken. Ten tweede is embryonale ontwikkeling snel; Het duurt slechts een paar dagen voor de gehele vasculatuur om te ontwikkelen, gedurende welke periode het ontwikkelende vaatje ontwikkelt Ature kan worden afgebeeld. Ten derde zijn genetische en farmacologische interventies voor en tijdens het vatenvorming makkelijk te verrichten, zoals door middel van microinjectie van antisense morfolino nucleotiden (MO's) in het ontwikkelende embryo of door de badtoepassing van drugs 3 , 4 , 5 .
Het unieke voordeel van Xenopus over zebravis is dat embryologische manipulaties kunnen worden uitgevoerd omdat Xenopus stereotiepe holoblastische splitsingen volgt en de embryonale lotkaart is goed gedefinieerd 6 . Bijvoorbeeld, het is mogelijk om een embryo te genereren waarin slechts één zijdelingse zijde genetisch gemanipuleerd wordt door een antisense MO te injecteren naar een cel in het twee-cel stadium. Het is ook mogelijk om het hartprimordium van een embryo naar een ander te transplanteren om te bepalen of het gen zijn functie uitoefent door een cel-intrinsiek of -xtrinsiek mechanismeAss = "xref"> 7. Hoewel deze technieken meestal zijn ontwikkeld in Xenopus laevis , die allotetraploïde is en daarom niet ideaal is voor genetische studies, kunnen ze direct toegepast worden op Xenopus tropicalis , een nauw verwante diploïde soort 8 .
Een manier om de vasculatuur in een levend Xenopus embryo te visualiseren, is om een fluorescerende kleurstof te injecteren om de bloedvaten te labelen. Geacetyleerde laagdichtheidslipoproteïne (AcLDL) gemerkt met een fluorescerend molecuul zoals DiI is een zeer bruikbare sonde. In tegenstelling tot niet-geacetylleerde LDL bindt AcLDL niet aan de LDL-receptor 9 maar wordt endocytose door macrofagen en endothelcellen. De injectie van DiI-AcLDL in het hart van een levend dier resulteert in de specifieke fluorescerende etikettering van endotheelcellen, en de gehele vasculatuur kan worden afgebeeld door fluorescentiemicroscopie in levende of vaste embryo's 4 .
Hier preseren weGedetailleerde protocollen voor het visualiseren en kwantificeren van bloedvaten met behulp van DiI-AcLDL in Xenopus tropicalis ( Figuur 1 ). Wij leveren belangrijke praktische punten, met voorbeelden van succesvolle en mislukte experimenten. Daarnaast bieden we een eenvoudige methode voor de kwantitatieve analyse van vasculaire complexiteit, die nuttig kan zijn bij de beoordeling van de effecten van genetische en omgevingsfactoren op het vormen van het vaatnetwerk.
Het hier gepresenteerde protocol werd eerst ontwikkeld door Ali H. Brivanlou en collega's om ontwikkelingsgebeurtenissen tijdens vasculaire vorming in Xenopus laevis 4 te onderzoeken, maar zoals getoond in dit manuscript, kan deze toegepast worden op andere kleine dieren. Dye injectie in het hart is eenvoudig uit te voeren, en het gehele vasculaire netwerk kan worden afgebeeld onder een fluorescentiedissectiemicroscoop, evenals een confocale microscoop. Als de kleurstof in het hart w…
The authors have nothing to disclose.
Deze studie werd geïnspireerd door het werk van Levine et al. , Die deze experimentele methode beschreven en een uitgebreide beschrijving van de vaatontwikkeling in Xenopus laevis gaf . Wij danken de leden van ons laboratorium voor hun input. Deze studie werd ondersteund door het Yonsei University Future-Leading Research Initiative van 2015 (2015-22- 0095) en het Bio & Medical Technology Development Program van de National Research Foundation (NRF), gefinancierd door het ministerie van wetenschap, ICT en toekomstige planning ( NRF-2013M3A9D5072551)
35mm Petri dish | SPL | 10035 | Sylgard mold frame |
60mm Petri dish | SPL | 10060 | Embryo raising tray |
Borosilicate Glass | Sutter instrument | B100-50-10 | Needle for injection |
BSA | Sigma | A3059-10G | Coating reagent |
CaCl2 | D.S.P.GR Reagent | 0.1X MBS component | |
Coverslip | Superior | HSU-0111520 | For confocal imaging |
DiI-AcLDL | Thermo Fisher Scientific | L3484 | Vessel staining solution |
FBS | Hyclone | SH.30919.02 | For storage of testis |
Fiber Optical Illuminator | World Precision Instruments | Z-LITE-Z | Light |
Ficoll | Sigma | F4375 | Injection buffer |
Flaming/Brown Micropipette Puller | Sutter instrument | P-97 | Injection needle puller |
Forcep | Fine Science Tool | 11255-20 | For embryo hatching and needle tip cutting |
Glass Bottom dish | SPL | 100350 | For confocal imaging |
hCG | MNS Korea | For priming of frogs | |
HEPES | Sigma | H3375 | Buffering agent |
Incubator | Lab. Companion | ILP-02 | For raising embryos |
KCl | DAEJUNG | 6566-4400 | MBS component |
L15 medium | Gibco | 11415-114 | For storage of testis |
L-cysteine | Sigma | 168149-100G | De-jellying reagent |
MgSO4 | Sigma | M7506 | MBS component |
Microtube | Axygen | MCT-175-C-S | For storage of testis |
MS222 | Sigma | E10521 | Anesthetic powder |
NaCl | DAEJUNG | 7647-14-5 | MBS component |
NaOH | Sigma | S-0899 | pH adjusting reagent |
Paraformaldehyde | Sigma | P6148 | Fixatives |
PBS | BIOSESANG | P2007 | Buffer for imaging |
pH paper | Sigma | P4536-100EA | For confirming pH |
PICO-LITER INJECTOR | Waner instruments | PLI-100A | For injection |
Pin | Pinservice | 26002-10 | For incision |
Pinholder | Scitech Korea | 26016-12 | For incision |
Precision Stereo Zoom Binocular Microscope | World Precision Instruments | PZMIII | For visual screening |
Standard Manual Control Micromanipulator | Waner instruments | W4 64-0056 | For microinjection |
SYLGARD 184 Kit | Dow Corning | For DiI injection | |
Transfer pipette | Korea Ace Scientific Co. | YM.B78-400 | For eggs and embryo collection |