Microplastics act as vector of potentially toxic organic contaminants with unpredictable effects. This protocol describes an alternative methodology for assessing the levels of organochlorine pesticides adsorbed on plastic pellets and identifying the polymer chemical structure. The focus is on pressurized fluid extraction and attenuated total reflectance Fourier transform infrared spectroscopy.
Plastic resin pellets, categorized as microplastics (≤5 mm in diameter), are small granules that can be unintentionally released to the environment during manufacturing and transport. Because of their environmental persistence, they are widely distributed in the oceans and on beaches all over the world. They can act as a vector of potentially toxic organic compounds (e.g., polychlorinated biphenyls) and might consequently negatively affect marine organisms. Their possible impacts along the food chain are not yet well understood. In order to assess the hazards associated with the occurrence of plastic pellets in the marine environment, it is necessary to develop methodologies that allow for rapid determination of associated organic contaminant levels. The present protocol describes the different steps required for sampling resin pellets, analyzing adsorbed organochlorine pesticides (OCPs) and identifying the plastic type. The focus is on the extraction of OCPs from plastic pellets by means of a pressurized fluid extractor (PFE) and on the polymer chemical analysis applying Fourier Transform-InfraRed (FT-IR) spectroscopy. The developed methodology focuses on 11 OCPs and related compounds, including dichlorodiphenyltrichloroethane (DDT) and its two main metabolites, lindane and two production isomers, as well as the two biologically active isomers of technical endosulfan. This protocol constitutes a simple and rapid alternative to existing methodology for evaluating the concentration of organic contaminants adsorbed on plastic pieces.
Global production of plastics is continuously rising since the 1950's to reach 311 million tons in 2014 with about 40% used in packaging1. In parallel, increasing quantities of these materials are accumulating in the environment, which might pose a serious threat to the ecosystems2. Although already reported in the 1970's, the occurrence of plastic debris in the marine environment has only received a greater attention in the past decade. Especially microplastics, plastic fragments with a diameter of ≤ 5 mm, are now recognized as one of the main marine water quality issues3.
Plastic resin pellets are small granules generally in the shape of a cylinder or a disk and with a diameter of a few mm (e.g., 2 to 5 mm)4,5. They fall in the category of microplastics. These plastic granules are industrial raw material from which final plastic products are manufactured through re-melting and molding at high temperature6. They can be unintentionally released to the environment during manufacturing and transport. For instance, they can be directly introduced to the ocean through accidental spills during shipping4,7,8. They can be carried from land to oceans by surface run-off, streams and rivers. Because of their environmental persistence, plastic pellets are widely distributed in the oceans and found on beaches all over the world4. They can negatively affect marine organisms and can enter the food chain, where their effects are unpredictable6,7. Furthermore, several studies have revealed the presence of environmental contaminants adsorbed onto plastic pellets collected in a coastal environment, which act as vector of these potentially toxic chemicals4,9,10. In fact, there is laboratory evidence suggesting that these chemicals can bioaccumulate in tissues of organisms after being released from ingested plastic fragments11,12.
In order to better assess the hazards associated with the occurrence of plastic pellets in the marine environment, it is necessary to develop methodologies that can determine sorbed organic contaminants. An important step is the extraction of the chemicals from the plastic matrices, which can present heterogeneous physical-chemical characteristics depending on the polymer type, its degradation stage, and pre-treatments. Most of the investigations reported in the literature use maceration or Soxhlet techniques4,5,6,9,13,14,15,16,17,18, which are solvent and/or time consuming. Regarding the growing interest for this issue, alternatives should be developed, for a faster evaluation of organic contaminants adsorbed on plastic pieces. In addition, plastic chemical analysis provides information about the chemical structure of the microplastics. As a result, the predominant types of polymers and copolymers present in the environment can be evaluated. Although plastic fragments are usually made of polyethylene (PE) and polypropylene (PP)5, some sampling locations can present a particular profile where other categories are significantly represented (e.g., ethylene/vinyl acetate copolymer and polystyrene (PS)). FT-IR spectroscopy is a reliable and user-friendly technique for polymer identification commonly used to identify microplastics19,20.
The main aim of the present work is to offer a rapid and simple option for extracting OCPs and related compounds from plastic pellets by means of a PFE. However, the design of the protocol includes all steps leading to the determination of sorbed OCPs, from the sampling of the resin pellets to the analysis of the compounds. The method of identifying the plastic type is also described. The developed methodology focuses on 11 OCPs and related compounds: i) DDT (2,4'- and 4,4'-dichlorodiphenyltrichloroethane) and its two main metabolites DDE (2,4'- and 4,4'-dichlorodiphenyldichloroethylene) and DDD (2,4'- and 4,4'-dichlorodiphenyldichloroethane); ii) the isomer gamma-hexachlorocyclohexane (γ-HCH) as the main ingredient of the pesticide lindane and the two isomers α-HCH and β-HCH released during its production15; iii) and the two biologically active isomers endosulfan I (Endo I) and II (Endo II) present in the technical endosulfan. The studied pesticides are broad-spectrum insecticides, chemically stable, hydrophobic, and classified as persistent organic pollutants (POPs) by the Stockholm Convention21.
1. Plastic Pellet Sampling
2. Extraction of OCPs from Plastic Pellets
3. Concentration and Clean-up of the Extract
4. Analysis of the Cleaned and Concentrated Extract
5. Plastic Type Identification
Plastic pellets are usually found along the high and low tide lines of sandy beaches (Figure 1A). They can also stick to seagrass freshly stranded on beaches, after a storm for instance. They can occasionally be found on pebble and stony beaches in accumulation areas of stranded material.
Plastic pellets are usually easily recognizable by their shape, size and color as shown in Figure 1B (see the two middle columns). They could be mistaken for tiny gravels (see columns 5 and 6), small biological fragments, or particles of different origins (see columns 1 and 2). Once in the laboratory, the suspicious items can be discarded. In case of doubt, it is possible to check the floatability of the samples in double distilled water. Gravels will sink whereas plastic pellets will mostly float. A sample of plastic pellets collected on a beach is shown in Figure 1C for illustration. An example of the identity beach form to be filled in the field is provided Figure 1D.
Figure 1: (A) Plastic resin pellets stranded on a sandy beach at the tide line. (B) Plastic resin pellets vs. gravel and other stranded materials. Fragments of different origins are presented in the 1st and 2nd columns from the left. Small gravel particles are aligned in columns 5 and 6. Plastic pellets are in the middle columns. (C) Sample of plastic resin pellets. (D) Example of an identity beach form. Please click here to view a larger version of this figure.
Whitish and yellowish pellets are usually predominant over other pellets, especially pigmented ones. However, some sampling sites present a particular profile and therefore it is advised to classify the plastic pieces by color (visual assessment) prior to extraction. A visual reference can be created to help sorting the pellets as presented on Figure 2 (from left to right: white/transparent, whitish/yellowish, yellow/orange, amber/brown, and pigmented).
Figure 2: Classification of plastic pellets by color, from left to right: white/transparent, whitish/yellowish, yellow/orange, amber/brown and pigmented. Please click here to view a larger version of this figure.
It can happen that some pellets start to melt during the extraction process. Thus, quartz sand particles will stick on their surface after extraction. For instance, in Figure 3A, the isolated pellet on the left of the Petri dish has sand particles sticking on its surface due to melting. This often occurs with ethylene/vinyl acetate copolymers due to their low melting point compared to other plastic polymers such as PE and PP. Exceptionally, the melting process can be too severe and the extract will appear milky (Figure 3B). In this case, it is advised to discard the sample immediately after extraction. This extract would clog the sorbent of the SPE cartridge.
Figure 3: (A)The isolated pellet on the left of the Petri dish has sand particles sticking on its surface due to melting. (B) Extraction with polymer break down.The melting process can render the extract to appear milky. Please click here to view a larger version of this figure.
As a first approach, spiked virgin pellets were prepared in order to optimize the extraction step and assess its repeatability. As can be seen from Figure 4A, all 11 OCPs were extracted applying the described protocol. In addition, Figure 4B illustrates the analysis result of OCPs extracted from pellets sampled on a beach at the Adriatic coast. In this case, 8 OCPs out of 11 were detected. The chromatographic peak identification is based on the retention times obtained from the injection of OCPs individual standard solutions. A deviation from standard peak retention time of 0.1% is accepted as the maximum. The calculation of OCPs concentrations is based on the analysis of standard solutions. Calibration equations and recoveries from the SPE and concentration steps must be determined for each studied compound prior to sample analysis (Table 1).
Figure 4: (A) Chromatogram of OCPs extracted from spiked virgin PE pellets. (B) Chromatogram of OCPs extracted from pellets sampled on the Adriatic coast. Please click here to view a larger version of this figure.
Compounds | Tr (min) | Calibration curve equation | R2 | Recovery (%) |
a-HCH | 9.25 | y = 1836x – 315 | 0.9992 | 99 |
g-HCH | 9.92 | Y = 2055x – 158 | 0.9996 | 96 |
b-HCH | 10.45 | Y = 772x + 58 | 0.9993 | 78 |
24-DDE | 13.90 | y = 2611x + 262 | 0.9999 | 76 |
Endosulphan I | 14.50 | y = 2015x + 280 | 0.9999 | 74 |
44-DDE | 15.16 | y = 3942x – 427 | 0.9988 | 82 |
24-DDD | 15.52 | y = 1822x + 157 | 0.9999 | 94 |
24-DDT | 16.64 | y = 962x – 93 | 0.9965 | 75 |
44-DDD | 17.11 | y = 2617x + 44 | 0.9992 | 86 |
Endosulphan II | 17.30 | y = 2212x + 123 | 0.9995 | 102 |
44-DDT | 18.32 | y = 725x – 80 | 0.9955 | 96 |
Table 1: Example of calibration and recovery results obtained for the 11 studied OCPs.
A representative concentration is determined for each sampling location by analyzing at least 3 replicates of 10 pellets and taking the median value. The latter is preferred to the average value due to the dispersion of the results4. Figure 5 shows an example of results based on 5 replicates.
Figure 5: Median concentration of OCPs extracted from pellets sampled on the Adriatic coast. The data shows an example of results based on 5 replicates. Please click here to view a larger version of this figure.
The chemical analysis of the plastic is carried out on an ATR-FT-IR spectrometer. The measurement is performed on the inner side of a pellet slice. Plastic pieces are covered by biofilms and/or by adherent layer(s), which can interfere in the IR spectra of the sample. Thus, cutting the pellets allows an easier identification of the polymer than processing uncut items, because the ATR crystal is in contact with less contaminated material. The chemical composition analysis results of an uncut pellet are shown in Figure 6A. The item was identified as rubber with a probability of about 66% at the highest. Figure 6B presents the results obtained from a slice of the same pellet, which was ultimately shown to be made of PE with a probability of 99%. The second measurement was performed on the inner side of the fragment.
Figure 6: (A) FT-IR spectrum of the uncut pellet and best hit results from the spectra library. (B) FT-IR spectrum of the pellet slice and best hit results from the spectra library. Please click here to view a larger version of this figure.
PE, as identified in Figure 7A, is the most common polymer type found in plastic pellets, followed by PP (Figure 7B). Ethylene/vinyl acetate copolymer is the 3rd most common plastic type usually identified (Figure 7C). Pellets made of PS can occasionally also be found (Figure 7D). An example of plastic type identification for a replicate of 10 pellets is given in Table 2. As can been seen, the sample consists of 70% by PE.
Figure 7: FT-IR spectrum and best hit results of a pellet identified as (A) PE (99.0%); (B) PP (98.9%); (C) ethylene/vinyl acetate copolymer (97.0%); and (D) PS (99.6%). Please click here to view a larger version of this figure.
Sample Name | Search Score | Search Best Hit | Search Best Hit Description |
Sample 1-1 | 0.990764 | P01034 | P1034.SP IMPACT-RESISTANT UHMW POLYETHYLENE ROD |
Sample 1-2 | 0.992768 | P00508 | P0508.SP POLYETHYLENE, MN=1100, 9002-88-4 |
Sample 1-3 | 0.990528 | P01037 | P1037.SP MOISTURE-RESISTANT LDPE POLYETHYLENE ROD |
Sample 1-4 | 0.956303 | P00561 | P0561.SP POLYSTYRENE, MONOCARBOXY TERMINATED, MW=200000, 9003-53-6 |
Sample 1-5 | 0.988493 | P00147 | P0147.SP ETHYLENE/VINYL ACETATE COPOLYMER, 18% VA BY WT., 24937-78-8 |
Sample 1-6 | 0.990185 | P01046 | P1046.SP RIGID HDPE POLYETHYLENE ROD |
Sample 1-7 | 0.988167 | P01034 | P1034.SP IMPACT-RESISTANT UHMW POLYETHYLENE ROD |
Sample 1-8 | 0.969821 | P00546 | P0546.SP POLYPROPYLENE, ISOTACTIC, TG=-26, 9003-07-0 |
Sample 1-9 | 0.991779 | P01036 | P1036.SP METAL-DETECTOR-GRADE UHMW POLYETHYLENE ROD |
Sample 1-10 | 0.988388 | P01046 | P1046.SP RIGID HDPE POLYETHYLENE ROD |
Table 2: Polymer identification results of a pool of 10 pellets.
Most studies focusing on organic contaminants associated to plastic pellets have relied on classical extraction methods of the adsorbed chemicals. The Soxhlet apparatus is the most widely used technique with typical extraction times ranging from 12 to 24 h and with high consumption of organic solvents (i.e., from 100 to 250 mL per extraction)23. Maceration extractions require a long contact time between the sample and the organic solvent (e.g., 6 days)4 and can be hastened by adding an ultrasonication step. In contrast, pressurized fluid extraction, as described in this study, is an efficient way to rapidly extract analytes from solid or semi-solid matrices under high pressure and temperature using a reduced amount of solvent (e.g., 40 mL). Although it is commonly used as an alternative to the Soxhlet method, this technique has rarely been employed in the field of microplastics14. One of the limitations linked to the application of this technique to the analysis of plastic fragments is the potential melting of polymers, which are then difficult to remove from the extract and often make its analysis impossible. This issue is not encountered when extracting organics from homogeneous matrices. In this case, the extraction temperature is set according to the polymer type of the plastic sample. Microplastic samples are composed of a heterogeneous mixture of items made of various polymer types in different degradation states, which often cause the early melting of the plastic. Thus, the temperature in the PFE cell must be optimized to allow the extraction of OCPs regardless of the polymer type and its degradation state. In this work, a temperature of 60 °C together with a long hold time were found to be a good compromise between extraction efficiency and melting issues. Only rubber and aged ethylene/vinyl acetate copolymer are prone to melting, but these polymers are usually present at such low amounts in the sample that they do not affect extraction.
In many studies4,8,13,16,18, only aged PE pellets are analyzed for their adsorbed organic contaminant content. Because of their surface properties, this category of polymers has a greater affinity to adsorb environmental pollutants than other type of pellets and they are the predominant polymer class4. However, some sampling locations present a special profile with an abundance of less aged pellets (i.e., white or transparent) and/or a higher variety in polymer types than commonly found. Thus, a different approach is suggested here to avoid a possible overestimation of the organic contaminant levels. The classification of plastic pellets is based on color rather than on polymer type. Moreover, the identification of the plastic type can still be carried out after the extraction step. By proceeding in this order, the risk of sample contamination during the polymer chemical analysis is lowered and the plastic identification process can be facilitated by cutting the pellets, as previously explained. Extracting organic contaminants from items that are mistaken for plastic pellets would be the main limitation of this methodology. However, it can be underlined that only a negligible fraction (i.e., less than 0.5%) of the sampled pellets is shown not to be made of plastic polymer after chemical analysis.
This protocol was developed for the determination of OCPs adsorbed on plastic pellets. However, it can be adapted for detection of other categories of organic contaminants usually found associated to microplastics such as polychlorinated biphenyls (PCBs) or polycyclic aromatic hydrocarbons (PAHs), as well as plastic softeners or additives. To this end, the clean-up step would have to be further optimized by eluting the sorbent with several successive solvents of different polarities4,10. To some extent, the extraction solvent composition could also be modified, by adding a fraction of dichloromethane and/or acetone to hexane, for instance. Finally, new analytical methods must be developed specially for the compounds to be investigated. Although Gas Chromatography-Electron Capture Detector (GC-ECD) is a sensitive technique, its selectivity for halogenated compounds limits its application to other classes of compounds. Moreover, peak identification is only based on retention times, which can lead to misinterpretation of chromatograms. To lower the risk of misidentification, a deviation from standard solution retention times of only 0.1% is accepted. Gas chromatography equipped with a mass spectrometer (GC-MS) is an appropriate technique for validating the peak identification. It could be run in parallel to GC-ECD or used as a single analysis method if its sensitivity allows the quantification of trace concentrations.
This methodology focuses on resin pellets, but it could be further optimized for the analysis of other microplastic categories. However, the sorting of plastic fragments from environmental samples (e.g., sea surface, sediment, or biota) is more challenging than the one of pellets and a visual identification is not appropriate. Thus, the chemical analysis of the polymers should be performed prior to extraction. Knowing that microplastic sizes range from 5 mm to a few hundred µm (e.g., 300 µm), the analysis should be performed on a micro ATR-FTIR spectrometer, which is adapted for the measurements of small particles19,20. Moreover, the separation of microplastics from environmental samples usually requires the use of solvents (e.g., ethanol) and/or strong acids or bases (e.g., acid digestion of tissues), which can desorb and/or degrade the organic contaminants associated to the particles. Thus, alternative separation techniques should be developed, which would preserve the chemicals. In addition, it should be underlined that the quantity of microplastics detected in sea surface and biota is often insufficient for performing quantitative analyses of organic compounds. This protocol is adapted to process plastic fragments visible to the naked eye and made of hard polymers. It is not likely to work on soft materials or extremely small items (i.e., <1 mm). Thus, the microplastic categories of films, filaments, and foams should be discarded from the samples. Nevertheless, small microplastic pieces could be analyzed for their organic contaminant content and their polymer type. In this case, it is advised to cut the items in small particles of a few mm prior to extraction or FT-IR analysis.
The authors have nothing to disclose.
This work was funded by IPA Adriatic Cross-border Cooperation Program 2007-2013, within the DeFishGear project (1°str/00010).
Alpha–HCH | Dr. Ehrenstorfer, Augsburg, Germany | DRE-C14071000 | H301, H351, H400, H410, H312 |
Beta–HCH | Fluka, Sigma-Aldrich, St. Louis, USA | 33376-100MG | H301, H312, H351, H410 |
Lindane | Fluka, Sigma-Aldrich, St. Louis, USA | 45548-250MG | H301, H312, H332, H362, H410 |
Endosufan I | Supleco, Sigma-Aldrich Bellefonte, PA, USA | 48576-25MG | H301, H410 |
Endosulfan II | Supleco, Sigma-Aldrich, Bellefonte, PA, USA | 48578-25MG | H301, H410 |
2,4'–DDD | Fluka, Sigma-Aldrich, St. Louis, USA | 35485-250MG | H351 |
4,4’–DDD | Dr. Ehrenstorfer, Augsburg, Germany | DRE-C12031000 | H301, H351, H400, H410, H312 |
2,4’–DDE | Dr. Ehrenstorfer, Augsburg, Germany | DRE-C12040000 | H351, H400, H410, H302 |
4,4’-DDE | Fluka , Sigma-Aldrich, St. Louis, USA | 35487-250MG | H302, H351, H410 |
2,4’–DDT | Dr. Ehrenstorfer, Augsburg, Germany | DRE-C12081000 | H301, H311, H330, H351, H400, H410 |
4,4’–DDT | National Institute of Standards and Technology, Gaithersburg, USA | RM8469-4,4'-DDT | H301, H311, H351, H372, H410 |
n-Hexane | VWR International GmbH, Graumanngasse, Viena, Austria | 83992.320 | H225, H315, H336, H373, H304, H411 |
Acetone for HPLC | J.T.Baker, Avantor performance Materials B.V., Teugseweg, Netherlands | 8142 | H225, H319, H 336 |
FL-PR Florisil 1000mg/6mL | Phenomenex, Torrance, CA, USA | 8B-S013-JCH | |
Fat free quartz sand 0.3-0.9 mm | Buchi, Flawil, Switzerland | 37689 | |
Gas chromatograph Hawlett Packard HP 6890 Series gas chromatograph with GERSTEL MultiPurpose Sampler MPS 2XL with ECD and FID detector | Agilent technologies, Santa Clara USA | ||
Presure fluid extractor, Speed Extractor E-916 | Buchi, Flawil, Switzerland | ||
Solid phase extractor | Supleco, Sigma-Aldrich Bellefonte, PA, USA | ||
Concentrator miVac DUO | Genevac SP Scientific, Suffolk UK | ||
GC capillary column Zebron ZB-XLB (30 x 0.25 x 0.25) | Phenomenex, Torrance, CA, USA | 122-1232 | |
ATR FT-IR Spectrometer, Spectrum-Two | Perkin Elmer |