Summary

对碳化钼催化合成乙酸的程序升温脱氧

Published: February 07, 2017
doi:

Summary

这里提出为微观尺度程序升温反应器用于在醋酸脱氧评估碳化钼的催化性能的操作的协议。

Abstract

程序升温反应(TPRxn)是在各种环境条件下筛分固体催化剂性能的一个简单而强大的工具。一个TPRxn系统包括一个反应器,炉,气体和蒸气源,流量控制,仪表量化的反应产物( 例如 ,气相色谱仪),和仪器,以实时监控( 例如 ,质谱仪)的反应。这里,我们应用TPRxn方法来研究碳化钼催化剂的乙酸,以及许多在生物质热解蒸气的升级/稳定的重要反应的脱氧。 TPRxn用于评估催化剂的活性和选择性,并测试假想反应途径( 例如 ,脱羰基,ketonization,和氢化)。乙酸脱氧的TPRxn研究的结果表明,钼碳化物为在温度高于该反应的活性催化剂300℃,并且反应主张脱氧( ,CO键破)产品在温度低于 400°C和脱羰基( ,CC键破)产品在温度高于 400℃。

Introduction

程序升温反应(TPRxn)是许多程序升温方法,包括解吸(TPD),氧化(TPO)和还原(TPR),并且进行经由催化剂与反应物的并发的曝光或随后在一个稳定增加1温度 1,2,3 TPRxn是一个短暂的技术,该技术提供了有关催化剂的活性和选择性反应温度的函数的信息。 4,5,6,也是一个流行的技术:搜索文献亩产量达1000余源援引其使用关键字“程序升温反应'的。

TPRxn实验在微反应器系统典型地执行的,配备有质谱仪(MS),用于将反应器流出物的实时分析和p的相关性erformance温度。反应气体可以通过质量流量控制器和液体可以通过注射泵或通过液体鼓泡惰性气体的蒸气被引入引入。该催化剂通常是在原位预处理以形成用于该反应所需的催化阶段。一些系统配有附加的分析设备,超出了典型质谱仪,以提供有关该催化剂选择性存在于催化剂中,或反应机理的定量或定性的信息,表面的种类。例如,变换原位傅立叶编程的温度红外光谱(FTIR)提供了有关表面物种具有不同反应温度演变信息。 7,8在这项工作中表现出的TPRxn系统配备除更典型的MS的气相色谱(GC)。这GC,配备了四个平行柱,使得更精确的量化反应产物的fication,但在分析频率所花费的产品通过柱以洗脱时间的限制。因此,MS和GC的组合可以是用于与反应物和产物的准确定量耦合实时识别特别有用。

这里,我们应用TPRxn方法来研究乙酸对碳化钼催化剂的脱氧。这是催化剂研究的一个有趣和重要的反应,醋酸是存在于生物质热解蒸气许多羧酸一个有用的模拟。 9在生物质热解蒸气的高氧含量就必须除氧以产生烃燃料,10,11,12和碳化钼催化剂显示有前途的许多生物质热解蒸气模型化合物,包括糠醛,1-丙醇脱氧性能,酚和乙酸。 9,13,14,15,16然而,在脱氧反应的碳化钼催化剂的活性和选择性取决于催化剂的结构和组成,反应物质和反应条件。

从乙酸TPRxn收集的数据表明,碳化钼催化剂活性为上述脱氧反应300℃,并且当带催化剂的表征信息相结合允许经由乙酸流动率的计算温度的函数的催化剂活性的定量。该TPRxn结果表明,脱氧( ,CO键破)产品在温度低于青睐400°C和脱羰基( ,CC键破)产品FAVO红色在温度高于 400℃。此外,TPRxn研究示出了使用各种合成方法生产碳化钼催化剂在活动的变化和选择性( ,生产不同碳化钼催化剂的结构和组合物)。尽管如此,这些信息的值,并且更一般的TPRxn实验数据朝向催化剂设计和工艺优化的成功应用是所得到的数据的质量的函数。在整个过程TPRxn强调了潜在的困难和局限性慎重考虑和知识是至关重要的。

Protocol

注意:操作之前使用的所有化学品,请咨询安全数据表(SDS)。如果用空气或氧气和点火源相结合的易燃气体可能存在爆炸的危险。氢气是一种极易燃的气体。酸是腐蚀性的,并且在皮肤或眼睛接触的情况下,有刺激性,并可能产生灼伤。乙酸是一种易燃液体和蒸气,因此可点燃和/或明火,火星和氧化剂的存在下发生爆炸,除了可能造成严重的皮肤灼伤和眼损伤。当未在封闭系统或容器,乙酸应…

Representative Results

在线MS提供了分析在实时将反应器出口的气体组合物中的能力。在线MS没有加上任何装置来分离分析前的产品,并且因此具有重叠质量裂解型态的化合物之间进行区分时,物种鉴定是具有挑战性。如表2所示,许多由乙酸TPRxn实验的共同产物的由多个共同M / Z信号特征。该MS数据的解卷积(M / Z = 1 – 100作为温度的函数)可用于向得到半定量数据,因为对于给定的?…

Discussion

该TPRxn方法为催化材料的筛选的有力工具,提供关于催化剂作为反应温度的函数的活性和选择性的信息。其他程序升温方法如TPD,TPO和TPR可以提供反应物的吸附力,吸附位点的数量,和适当的催化剂的前处理过程的信息,但不提供直接的催化性能数据。要注意,在这一工作中详述的TPRxn方法不测量稳态的反应速率,因此,反应数据可包括催化剂稳定化,失活和运输限制的影响是重要的。然而,TPRxn?…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

This work was supported by the Department of Energy Bioenergy Technologies Office under Contract no. DE-AC36-08-GO28308. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

Materials

glacial acetic acid Cole-Parmer EW-88401-62 alternate supplier acceptable if ACS purity grade. See caution statement in protocol for safety information
UHP H₂ Airgas HY R300 alternate supplier acceptable if >99.99% purity
UHP He Airgas HE R300SS alternate supplier acceptable if >99.99% purity
UHP Ar Arigas AR R200 alternate supplier acceptable if >99.99% purity
acetone VWR International BDH1101-4LP alternate supplier acceptable if >99.5% purity
quartz chips Powder Technology Inc. Crushed Quartz sieved 180-300 µm, calcined in air at 500 °C overnight
mass spectrometer – turbo vacuum pump Pfeiffer Vacuum TSU 071 mass spectrometer is controlled with LabVIEW 2010 software package (National Instruments)
mass spectrometer – turbo vacuum pump Stanford Research Systems RGA100
micro gas chromatograph Agilent CP740388 490 Micro GC; 4-channel system
Channel 1: 494001360 Molseive 10m, heated backflush
Channel 2: 494001460 PPU 10m, heated backflush
Channel 3: 490040 AL2O3/KCL 10+0.2m, heated backflush SPECIAL
Channel 4: 492005750 5CB 15m, heated
GC software Aglient OpenLAB CDS EZChrom Edition
clean gas filters Agilent CP17974 for use on GC carrier gases (He, Ar)
quartz "U-tube" reactor n/a hand blown glass, custom built to order
bubbler n/a custom built to order
ceramic furnace Watlow discontinued Similar furnace part #: VC401J12A-B000R
heat tape controller n/a custom built with Watlow EZ-zone parts
heat tape Omega FGH051-060 alternate supplier for extreme temperature heat tape acceptable
heat tape insulation JEGS 710-80809 alternate supplier acceptable
thermocouple Omega e.g., KMQSS-062U-18 K-type thermocouples; alternate sizes may be required
thermocouple o-ring Swagelok VT-7-OR-001-1/2 perfluoroelastomer(fluorocarbon FKM) o-ring
2 µm solids filter, VCR gasket Swagelok SS-4-VCR-2-2M
1 µm orifice, VCR gasket Lenox Laser SS-4-VCR-2 for mass spectrometer orifice
316/316L stainless steel tubing and fittings Swagelok Varies See Swagelok 'VCR Metal Gasket Face Seal Fittings' and 'Stainless Steel Seamless Tubing and Tube Support Systems' catalogs for more information
316/316L stainless steel tubing and fittings Swagelok Varies See Swagelok 'Integral-Bonnet Needle Valves', 'Bellows-Sealed Valves' and 'One-Piece Instrumentation Ball Valves' catalogs for more information

Referencias

  1. Cvetanović, R. J., Amenomiya, Y. Application of a Temperature-Programmed Desorption Technique to Catalyst Studies. Adv. Catal. 17, 103-149 (1967).
  2. Falconer, J. L., Schwarz, J. A. Temperature-Programmed Desorption and Reaction: Applications to Supported Catalysts. Catal. Rev. – Sci. Eng. 25 (2), 141-227 (1983).
  3. Hurst, N. W., Gentry, S. J., Jones, A., McNicol, B. D. Temperature Programmed Reduction. Catal. Rev. – Sci. Eng. 24 (2), 233-309 (1982).
  4. Sanchez, A., et al. When Gold Is Not Noble: Nanoscale Gold Catalysts. J. Phys. Chem. A. 103 (48), 9573-9578 (1999).
  5. Alayoglu, S., Nilekar, A. U., Mavrikakis, M., Eichhorn, B. Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat Mater. 7 (4), 333-338 (2008).
  6. Wachs, I. E., Madix, R. J. The oxidation of methanol on a silver (110) catalyst. Surf. Sci. 76 (2), 531-558 (1978).
  7. Topsoe, N. Y., Topsoe, H., Dumesic, J. A. Vanadia/Titania Catalysts for Selective Catalytic Reduction (SCR) of Nitric-Oxide by Ammonia. J Catal. 151 (1), 226-240 (1995).
  8. Clarke, D. B., Bell, A. T. An Infrared Study of Methanol Synthesis from CO2 on Clean and Potassium-Promoted Cu/SiO2. J Catal. 154 (2), 314-328 (1995).
  9. Schaidle, J. A., et al. Experimental and Computational Investigation of Acetic Acid Deoxygenation over Oxophilic Molybdenum Carbide: Surface Chemistry and Active Site Identity. ACS Catal. 6 (2), 1181-1197 (2016).
  10. Ruddy, D. A., et al. Recent advances in heterogeneous catalysts for bio-oil upgrading via “ex situ catalytic fast pyrolysis”: catalyst development through the study of model compounds. Green Chem. 16 (2), 454-490 (2014).
  11. Dutta, A., Schaidle, J. A., Humbird, D., Baddour, F. G., Sahir, A. Conceptual Process Design and Techno-Economic Assessment of Ex Situ Catalytic Fast Pyrolysis of Biomass: A Fixed Bed Reactor Implementation Scenario for Future Feasibility. Top. Catal. 59 (1), 2-18 (2016).
  12. Venkatakrishnan, V. K., Delgass, W. N., Ribeiro, F. H., Agrawal, R. Oxygen removal from intact biomass to produce liquid fuel range hydrocarbons via fast-hydropyrolysis and vapor-phase catalytic hydrodeoxygenation. Green Chem. 17 (1), 178-183 (2015).
  13. Bej, S. K., Thompson, L. T. Acetone condensation over molybdenum nitride and carbide catalysts. Appl. Catal., A. 264 (2), 141-150 (2004).
  14. Sullivan, M. M., Held, J. T., Bhan, A. Structure and site evolution of molybdenum carbide catalysts upon exposure to oxygen. J Catal. 326, 82-91 (2015).
  15. Lee, W. S., Kumar, A., Wang, Z. S., Bhan, A. Chemical Titration and Transient Kinetic Studies of Site Requirements in Mo2C-Catalyzed Vapor Phase Anisole Hydrodeoxygenation. ACS Catal. 5 (7), 4104-4114 (2015).
  16. Ren, H., et al. Selective Hydrodeoxygenation of Biomass-Derived Oxygenates to Unsaturated Hydrocarbons using Molybdenum Carbide Catalysts. Chemsuschem. 6 (5), 798-801 (2013).
  17. Grob, R. L., Kaiser, M. A. . Modern Practice of Gas Chromatography. , 403-460 (2004).
  18. Guiochon Georges, L., Guillemin Claude, . Journal of Chromatography Library. 42, 563-586 (1988).
  19. Guiochon Georges, L., Guillemin Claude, . Journal of Chromatography Library. 42, 587-627 (1988).
  20. Guiochon Georges, L., Guillemin Claude, . Journal of Chromatography Library. 42, 629-659 (1988).
  21. Guiochon Georges, L., Guillemin Claude, . Journal of Chromatography Library. 42, 661-687 (1988).
  22. Baddour, F. G., Nash, C. P., Schaidle, J. A., Ruddy, D. A. Synthesis of α-MoC1-x Nanoparticles with a Surface-Modified SBA-15 Hard Template: Determination of Structure-Function Relationships in Acetic Acid Deoxygenation. Angew. Chem., Int. Ed. n/a-n/a. , (2016).
  23. Habas, S. E., et al. A Facile Molecular Precursor Route to Metal Phosphide Nanoparticles and Their Evaluation as Hydrodeoxygenation Catalysts. Chem. Mater. 27 (22), 7580-7592 (2015).
  24. Zhang, Q., et al. Deconvolution and quantification of hydrocarbon-like and oxygenated organic aerosols based on aerosol mass spectrometry. Environ Sci Technol. 39 (13), 4938-4952 (2005).
  25. Ko, E. I., Benziger, J. B., Madix, R. J. Reactions of Methanol on W(100) and W(100)-(5 X 1)C Surfaces. J Catal. 62 (2), 264-274 (1980).
  26. Pestman, R., Koster, R. M., Pieterse, J. A. Z., Ponec, V. Reactions of carboxylic acids on oxides: 1. Selective hydrogenation of acetic acid to acetaldehyde. J Catal. 168 (2), 255-264 (1997).
  27. Pestman, R., Koster, R. M., Van Duijne, A., Pieterse, J. A. Z., Ponec, V. Reactions of carboxylic acids on oxides: 2. Bimolecular reaction of aliphatic acids to ketones. J Catal. 168 (2), 265-272 (1997).
  28. . NIST Standard Reference Database Number 69. NIST Chemistry WebBook. , (2016).
  29. Ausloos, P., et al. The critical evaluation of a comprehensive mass spectral library. J. Am. Soc. Mass Spectrom. 10 (4), 287-299 (1999).
  30. Barwick, V., Langley, J., Mallet, T., Stein, B., Webb, K. . Best Practice Guide for Generating Mass Spectra. , (2006).
  31. Lecchi, P., et al. A Method for Monitoring and Controlling Reproducibility of Intensity Data in Complex Electrospray Mass Spectra: A Thermometer Ion-based Strategy. J. Am. Soc. Mass Spectrom. 20 (3), 398-410 (2009).

Play Video

Citar este artículo
Nash, C. P., Farberow, C. A., Hensley, J. E. Temperature-programmed Deoxygenation of Acetic Acid on Molybdenum Carbide Catalysts. J. Vis. Exp. (120), e55314, doi:10.3791/55314 (2017).

View Video