This study describes methods for the T7-mediated co-expression of multiple genes from a single plasmid in Escherichia coli using the pMGX plasmid system.
Co-expression of multiple proteins is increasingly essential for synthetic biology, studying protein-protein complexes, and characterizing and harnessing biosynthetic pathways. In this manuscript, the use of a highly effective system for the construction of multigene synthetic operons under the control of an inducible T7 RNA polymerase is described. This system allows many genes to be expressed simultaneously from one plasmid. Here, a set of four related vectors, pMGX-A, pMGX-hisA, pMGX-K, and pMGX-hisK, with either the ampicillin or kanamycin resistance selectable marker (A and K) and either possessing or lacking an N-terminal hexahistidine tag (his) are disclosed. Detailed protocols for the construction of synthetic operons using this vector system are provided along with the corresponding data, showing that a pMGX-based system containing five genes can be readily constructed and used to produce all five encoded proteins in Escherichia coli. This system and protocol enables researchers to routinely express complex multi-component modules and pathways in E. coli.
Co-expression of multiple proteins is increasingly essential, particularly in synthetic biology applications, where multiple functional modules must be expressed1; in studying protein-protein complexes, where expression and function often require co-expression2,3; and in characterizing and harnessing biosynthetic pathways, where each gene in the pathway must be expressed4,5,6,7,8. A number of systems have been developed for co-expression, particularly in the host organism Escherichia coli, the work horse for laboratory recombinant protein expression9. For example, multiple plasmids with differing selectable markers can be used to express individual proteins using a wealth of different expression vectors10,11. Single plasmid systems for multiple protein expression have used either multiple promoters to control the expression of each gene10,12; synthetic operons, where multiple genes are encoded on a single transcript2,13; or, in some cases, a single gene encoding a polypeptide that is ultimately proteolytically processed, yielding the desired proteins of interest14.
Figure 1: pMGX workflow showing the construction of a polycistronic vector. The pMGX system provides a flexible, easy-to-use strategy for the construction of synthetic operons under the control of an inducible T7 promoter. Please click here to view a larger version of this figure.
In this manuscript, the use of a highly effective system for the construction of multigene synthetic operons under the control of an inducible T7 RNA polymerase (Figure 1) is described. This system allows many genes to be expressed simultaneously from one plasmid. It is based on a plasmid system, originally called pKH22, that has been used successfully for a number of different applications6,7,8. Here, this plasmid set is expanded to include four related vectors: pMGX-A, an expression vector lacking any C- or N-terminal tags and with the ampicillin resistance marker; pMGX-hisA, an expression vector encoding an N-terminal hexahistidine tag and with the ampicillin resistance marker; pMGX-K, an expression vector lacking any C- or N-terminal tags and with the kanamycin resistance marker; and pMGX-hisK, an expression vector encoding an N-terminal hexahistidine tag and with the kanamycin resistance marker. In this study, the method for generating a polycistronic vector containing five genes using the pMGX system, specifically pMGX-A, is demonstrated along with the successful production of each individual protein in Escherichia coli.
1. Obtaining Genes of Interest
2. Cloning Genes of Interest into a Multigene Expression System Vector, pMGX18
3. Inserting Gene 2 into the pMGX Vector Containing Gene 1, pMGX-yfg1
4. Adding a Third Gene into the pMGX Vector Containing Genes 1 and 2, pMGX-yfg1,2
5. Producing Proteins of Interest Using a Multigene Expression System and Assessing Production by Western Blotting
In this study, the goal was to co-express five proteins from a single plasmid. The five-codon optimized synthetic gene fragments encoding either N- or C-terminal hexahistidine tags were purchased commercially. The synthetic genes were amplified by PCR and individually cloned into a PCR-blunt vector and sequenced. To generate the polycistronic plasmid, the five genes of interest were first cloned into a suitable pMGX plasmid, pMGX-A. Figure 2 shows PCRBlunt-yfg1 and PCRBlunt-yfg2 in addition to pMGX-A digested with NdeI + EcoRI (see Step 2). To clone the first two genes into pMGX-A, the plasmid was digested with NdeI + EcoRI (Figure 2). Upon cloning the genes of interest into pMGX-A, the newly constructed plasmids, designated as pMGX-yfg1 and pMGX-yfg2, were digested with AvrII + XbaI to confirm that successful clones were obtained, as shown in the 1.1-kb and 1.3-kb bands obtained in Figure 3.
Figure 2: Cloning of pMGX plasmids. The expected results of PCR-blunt plasmids containing yfg1 and yfg2 after digestion with NdeI + EcoRI are shown on a 0.7% agarose gel (110 V, 55 min). Lane 1, 1 kb DNA ladder; lane 2, PCRBlunt-yfg1; lane 3, PCRBlunt-yfg2; lane 4, pMGX-A control. Please click here to view a larger version of this figure.
Figure 3: Screening of pMGX-yfg1 and pMGX-yfg2. The 0.7% agarose gel (110 V, 55 min) shows the two bands that are generated by both pMGX-yfg1 and pMGX-yfg2 after digestion with AvrII + XbaI. Lane 1, 1-kb DNA ladder; lane 2, pMGX-yfg1; lane 3, pMGX-yfg2; lane 4, pMGX-A control. Please click here to view a larger version of this figure.
With both genes in the appropriate pMGX vector, the polycistronic plasmid was constructed. To generate the plasmid pMGX-yfg1,2, pMGX-yfg1 was digested with AvrII, as shown in Figure 4. pMGX-yfg2 was digested with AvrII + XbaI, and the 1.3-kb gene containing the fragment was ligated into the AvrII site of linearized pMGX-yfg1, generating pMGX-yfg1,2. Digestion of pMGX-yfg1,2 with EcoRI confirmed the successful cloning of the desired plasmid and is shown in Figure 5.
Figure 4: Generating the bicistronic plasmid pMGX-yfg1,2. The 0.7% agarose gel electrophoresis results (110 V, 55 min) of pMGX-yfg1 digested with AvrII and pMGX-yfg2 digested with AvrII + XbaI. Lane 1, 1-kb DNA ladder; lane 2, pMGX-yfg1 digested with AvrII; lane 3, pMGX-yfg2 digested with AvrII + XbaI; lane 4, pMGX-A control. Please click here to view a larger version of this figure.
Figure 5: Screening of pMGX-yfg1,2 clones. The resulting 0.7% agarose gel (110 V, 55 min) of pMGX-yfg1,2 clones digested with EcoRI is shown. Successful clones will generate two bands, one for the inserted gene yfg2 and the other corresponding to the backbone + yfg1 (pMGX-yfg1). Lane 1, 1 kb DNA ladder; lane 2, pMGX-yfg1,2 digested with EcoRI, clone 1; lane 3, pMGX-yfg1,2 digested with EcoRI, clone 2; lane 4, pMGX-A control. Please click here to view a larger version of this figure.
When generating a polycistronic plasmid containing two or more genes, one may encounter an undesirable reversed insertion of the gene cloned into the AvrII site. Figure 6 is a gel highlighting the difference between the results of a digested plasmid with a gene inserted in the correct orientation as opposed to a gene that is inserted in the reversed orientation. If the gene is ligated and cloned in the undesired orientation, the EcoRI site at the end of the gene will be inserted right next to the EcoRI site of the previous gene. This would yield a fragment size that is virtually undetectable by DNA gel electrophoresis (less than 50 bp). Additionally, the last inserted gene would appear in the backbone, which is readily identifiable due to the backbone size being larger than expected. The difference in the size of the backbone from the expected size will indicate the size of the last inserted gene.
Figure 6: Screening of pMGX-yfg1-5 clones. A 1.3% agarose gel (110 V, 65 min) depicting the results of pMGX-yfg1-5 digested with EcoRI is shown. Successful clones (lane 2) will generate a band corresponding to the last inserted gene (yfg5 in this case, 1.1 kb). Lane 1, 1-kb DNA ladder; lane 2, positive clone of pMGX-yfg1-5, digested with EcoRI; lane 3, negative clone of pMGX-yfg1-5, digested with EcoRI; lane 4, pMGX-yfg1-4 control. Please click here to view a larger version of this figure.
To complete the five-gene polycistronic expression vector, the remaining three genes were cloned one after another into pMGX-yfg1,2 to generate pMGX-yfg1-5 (see Step 5). This plasmid was then transformed into BL21-(λDE3), and expression of the proteins was induced in a mid-log phase culture by the addition of IPTG. Figure 7 is a Western blot of cell lysates, confirming that all five proteins from a single plasmid containing multiple genes in a single operon can be expressed. The expression of pMGX-yfg1 (containing 1 gene), pMGX-yfg1,2 (containing 2 genes), and pMGX-yfg1-5 (containing 5 genes) are shown.
Figure 7: Western blot analysis of multi-gene expression using the pMGX system. Incorporation of either N- or C-terminal hexahistidine tags enabled the Western blot detection of protein expression. Samples were separated on pre-cast 4-20% gradient strain-free acrylamide gels (200 V, 35 min, 10 cm x 8.5 cm), and then a transfer (40 V, 90 min) onto a nitrocellulose membrane (0.45 µm, 10 cm x 7 cm) was performed. HRP-conjugated anti-His monoclonal antibody, which does not require a secondary antibody, was used. Blocking, transfer, and antibody dilution buffers were prepared as recommended by the antibody manufacturer. Detection was performed with Western Chemiluminescent HRP substrate following the manufacturer's instructions. The resulting membrane was visualized using an imager without a filter. Lane 1, dual-color standard transferred onto the membrane (not chemiluminescent); lane 2, His6pMGX-yfg1; lane 3, His6pMGX-yfg1,2; lane 4, His6pMGX-yfg1-5. Note: Protein produced by yfg5 is the same size as the protein produced by yfg1 (both are 36 kDa) and cannot be separated on the gel. Please click here to view a larger version of this figure.
Supplemental Figures: Please click here to download this file.
Co-expression of multiple genes is increasingly essential, particularly in characterizing and reconstituting complex, multigene metabolic pathways3,4,5. The pMGX system makes multigene co-expression in E. coli routine6,7,8 and accessible to diverse researchers. In this study, five proteins of interest were shown to be simultaneously produced from a single plasmid system using pMGX-A. Many co-expression systems currently available only allow for the insertion of two genes, generating bicistronic plasmids such as pET Duet vectors12. If one requires the addition of more genes, multiple bicistronic vectors with different selectable markers are required. In contrast to other multigene expression systems, the pMGX system allows for the facile cloning of multiple genes into one plasmid, with the ability to reuse restriction sites without the need for different donor plasmids or for removing multiple restriction enzyme sites from the genes13,14. Critical steps in this protocol include gene design, prevention of background recircularization of singly digested pMGX vectors, and screens of the polycistronic vectors for the correct orientation of the inserted gene.
In planning the cloning strategy to construct a polycistronic system, it is essential to ensure that the genes of interest do not contain restriction sites required for the downstream cloning. In particular, these include XbaI and AvrII, which are required for the insertion of the second and subsequent genes into the pMGX vector containing the first gene of interest (Steps 3 and 4). In addition, it is essential to eliminate restriction sites that will be used for the initial cloning of the genes of interest into pMGX (Step 2). Typically, these include NdeI or NheI at the 5′ end of the gene and BamHI or EcoRI at the 3′ end of the gene, although other restriction sites can also be used for this step, if necessary. Elimination of extra, unwanted restriction sites can be easily performed at the gene synthesis stage or, in the case of genes cloned from other sources, by synonymous nucleotide substitutions via site-directed mutagenesis20.
The addition of subsequent genes of interest into pMGX containing the first gene of interest requires linearization of pMGX-yfg1 with AvrII (Step 3.1; note that it can also be linearized with XbaI). This linearized vector will rapidly religate during the insertion of the second gene of interest (Step 3.5), leading to an extremely high number of background clones. To avoid this, it is essential to treat the linearized vector with a phosphatase to dephosphorylate the 5′ ends of the linearized vector. Typically, CIP is used, although others are available. Optimization of both the units of phosphatase and the incubation time may be necessary to optimize the ligations of subsequent genes of interest into the linearized vector.
Lastly, when generating a polycistronic system, the gene of interest is initially excised by digestion with XbaI and AvrII, generating complementary cohesive ends at the 5′ and 3′ ends of the gene (Steps 3.2 and 4.2). This insert can be ligated into the linearized vector in the forward or reverse direction. As all the cohesive ends are identical, no directionality is enforced through complementary annealing of the cohesive ends. It is thus necessary to screen the resultant clones for the correct insertion direction of the gene of interest. This can be easily done by screening clones with one of the restriction sites used to clone the original gene of interest into pMGX (Step 2). Typically, EcoRI is used, as the restriction site is at the 3′ end of the gene, and it is thus appropriate to screen for directionality, as shown in Figure 6. In most cases, 50% of the clones containing the gene of interest have the gene in the correct orientation and 50% have the gene in the opposite orientation.
Infrequently (~10% of ligations), all the clones from a particular ligation may have the gene of interest inserted in only one direction. This outcome appears to be sequence-dependent, since it is highly reproducible in these specific instances. If this occurs, and the gene of interest is continuously inserting in the reverse orientation, the desired vector can usually be accessed by switching the direction of cloning. For example, instead of cloning yfg2 into the AvrII site of pMGX-yfg1, yfg1 can be cloned into the XbaI site of pMGX-yfg2. Note that this gives the identical final vector system. This added flexibility enabling access to the same system from different cloning strategies is highly advantageous.
An important limitation of this methodology is that the proteins encoded at the 3′ end of the polycistronic transcript typically are expressed at lower levels than the proteins encoded at the 5′ end of the transcript, and this effect is more pronounced the longer the transcript is. This means that changing the order of the genes of interest in the synthetic operon can impact the relative expression levels of the proteins that they encode, providing a mechanism for fine-tuning relative expression levels.
In summary, the pMGX system provides a reliable method for the co-expression of multiple proteins from a single plasmid in E. coli, which can be used for a variety of synthetic biology applications and for biochemical pathway characterization.
The authors have nothing to disclose.
This work was supported by the Natural Sciences and Engineering Research Council of Canada.
Enzymes | |||
Alkaline Phosphatase, Calf Intestinal (CIP) | New England Biolabs | M0290S | |
AvrII | New England Biolabs | R0174S | |
EcoRI | New England Biolabs | R0101S | |
NdeI | New England Biolabs | R0111S | |
XbaI | New England Biolabs | R0145S | |
Herculase II Fusion DNA Polymerase | Agilent Technologies | 600677 | |
T4 DNA Ligase | New England Biolabs | M0202S | |
Name | Company | Catalog Number | Comments |
Reagents | |||
1 kb DNA ladder | New England Biolabs | N3232L | |
4-20% Mini-PROTEAN TGX Stain-Free Protein Gels | Bio-Rad | 456-8095 | |
50 x TAE | Fisher Thermo Scientific | BP1332-4 | |
Agar | Fisher Thermo Scientific | BP1423-500 | |
Agarose | Fisher Thermo Scientific | BP160-500 | |
Ampicilin | Sigma-Alrich | A9518-5G | |
BL21 (DE3) chemically comeptent cells | Comeptent cell prepared in house | ||
B-PER Bacterial Protein Extraction Reagent | Fisher Thermo Scientific | PI78243 | |
dNTP mix | Agilent Technologies | Supplied with polymerase | |
Gel Extraction Kit | Omega | D2500-02 | E.Z.N.A Gel Extraction, supplied by VWR Cat 3: CA101318-972 |
Glycine | Fisher Thermo Scientific | BP381-1 | |
His Tag Antibody [HRP], mAb, Mouse | GenScript | A00612 | |
Immobilon Western Chemiluminescent HRP Substrate | EMD Millipore | WBKLS0100 | |
IPTG | Sigma-Alrich | 15502-10G | |
LB | Fisher Thermo Scientific | BP1426-500 | |
Methanol | Fisher Thermo Scientific | A411-20 | |
Pasteurized instant skim milk powder | Local grocery store | No-name grocery store milk is adequate | |
Nitrocellulose membrane | Amersham Protran (GE Healthcare Life Sciences) | 10600007 | Membrane PT 0.45 µm 200 mm X 4 m, supplied by VWR Cat #: CA10061-086 |
Plasmid DNA Isolation Kit | Omega | D6943-02 | E.Z.N.A Plasmid DNA MiniKit I, supplied by VWR Cat #: CA101318-898 |
pMGX | Boddy Lab | Request from the Boddy Lab Contact cboddy@uottawa.ca | |
Primers | Intergrated DNA Technologies | Design primers as needed for desired gene | |
Synthetic Gene | Life Technologies | Design and optimize as needed | |
Thick Blot Filter Paper | Bio-Rad | 1703932 | |
Tris base | BioShop | TRS001.1 | |
Tween-20 | Sigma-Alrich | P9416-50ML | |
XL1-Blue chemically competent cells | Comeptent cell prepared in house | ||
Name | Company | Catalog Number | Comments |
Equipment | |||
BioSpectrometer | Eppendorf | RK-83600-07 | |
Gel box – PAGE | Bio-Rad | 1658005 | Mini-PROTEIN Tetra Vertical Electrophoresis Cell |
Gel Imager | Alpha Innotech | AlphaImager EC | |
Incubator-oven | Fisher Thermo Scientific | 11-690-650D | Isotemp |
Incubator-shaker | Fisher Thermo Scientific | SHKE6000-7 | MaxQ 6000 |
Personna Razors | Fisher Thermo Scientific | S04615 | |
Power Pack | Bio-Rad | S65533Q | FB300 |
Transilluminator | VWR International | M-10E,6W | |
Thermocylcer | Eppendorf | Z316091 | Mastercycler Personal, supplied by Sigma |
UV Face-Shield | 18-999-4542 | ||
Waterbath | Fisher Thermo Scientific | 15-460-2SQ | |
Western Transfer Apparatus | Bio-Rad | 1703935 | Mini-Trans Blot Cell |