Apresentamos três protocolos de novos e mais eficientes para a diferenciação de células estaminais pluripotentes humanas induzida em cardiomiócitos, células endoteliais, e células do músculo liso e um método de entrega que melhora o enxerto de células transplantadas através da combinação de injecção das células com citocinas entrega mediada por remendo.
Humanos induzida células-tronco pluripotentes (hiPSCs) deve ser totalmente diferenciado em tipos específicos de células antes da administração, mas protocolos convencionais para diferenciar hiPSCs em cardiomiócitos (hiPSC-CMS), células endoteliais (hiPSC-ECs), e células musculares lisas (SMCs) são muitas vezes limitada pelo baixo rendimento, pureza e / ou pobre estabilidade fenotípica. Aqui, nós apresentamos novos protocolos para gerar hiPSC-CMs, -ECs, e -SMCs que são substancialmente mais eficiente do que os métodos convencionais, bem como um método para a combinação de injecção de células com um penso contendo citocina criado ao longo do local de administração. O remendo melhora tanto a retenção das células injectadas, por meio de selagem da faixa de agulha para impedir que as células de ser espremido para fora do miocárdio, e a sobrevivência de células, através da libertação do factor de crescimento semelhante a insulina (IGF), durante um período prolongado. Num modelo suíno de lesão de isquemia-reperfusão do miocárdio, a taxa de enxerto era mais do que duas vezes maior quando oAs células foram administrados com o remendo contendo citoquinas em comparação com as células, sem mancha, e o tratamento com ambos as células e o remendo, mas não apenas com as células, foi associada com melhorias significativas na função cardíaca e o tamanho do enfarte.
As células estaminais pluripotentes humanas induzida (hiPSCs) estão entre os agentes mais promissores para a terapia celular regenerativo porque eles podem ser diferenciadas em uma gama potencialmente ilimitada e a quantidade de células que não são rejeitadas pelo sistema imunitário do paciente. No entanto, a sua capacidade de auto-replicação e diferenciação podem também levar à formação de tumor e, consequentemente, hiPSCs precisa ser totalmente diferenciadas em tipos de células específicos, tais como cardiomiócitos (CMS), células endoteliais (ECs), e células do músculo liso (SMCs ), antes da administração. Um dos métodos mais simples e mais comum de administração da célula é a injecção directa intramiocardial, mas o número de células transplantadas que são enxertados pelo tecido do miocárdio nativa é excepcionalmente baixa. Muito deste atrito pode ser atribuído ao ambiente citotóxica do tecido isquémico; No entanto, quando as células estaminais embrionárias de murídeo (CES) foram injectados directamente no miocárdio de corações não lesionados, óomente ~ 40% dos 5 milhões de células foram entregues retida durante 3-5 h 1, o que sugere que uma proporção substancial das células administradas saiu do local de administração, talvez por terem sido espremidos para fora através do percurso da agulha pelas altas pressões produzidas durante contração do miocárdio.
Aqui, apresentamos métodos novos e substancialmente mais eficientes para a geração de cardiomiócitos hiPSC derivados (hiPSC-CMS) 2, células endoteliais (hiPSC-ECs) 3, e células musculares lisas (SMCs) 4. Notavelmente, este protocolo hiPSC-SMC é o primeiro a imitar a vasta gama de características morfológicas e funcionais observadas em somática SMCs 5 direccionando as células para um fenótipo de SMC contráctil ou predominantemente sintética. Também fornecemos um método de entrega de células que melhora a taxa de enxerto de células injectadas através da criação de uma citocina de fibrina contendo Patch sobre o local da injecção. O remendo parece melhorar a retenção de células, por meio de selagem da faixa da agulha para evitar que as células se sair do miocárdio, e a sobrevivência de células, através da libertação do factor de crescimento semelhante a insulina (IGF) ao longo de um período de pelo menos três dias.
Melhorou Rendimento / Pureza de hiPSC-CMs
protocolos convencionais para diferenciação de células-tronco humanas no CMS são muitas vezes limitadas pela baixa produtividade e pureza; por exemplo, apenas 35-66% das hESC-CMs obtido via separação Percoll e formação do corpo cardíaca expressa lento miosina de cadeia pesada ou cTnT 6. A pureza das populações hiPSC-CM diferenciadas pode ser substancialmente aumentada, seleccionando para a expressão de um gene repórt…
The authors have nothing to disclose.
This work was supported by US Public Health Service grants NIH RO1s HL67828, HL95077, HL114120, and UO1 HL100407-project 4 (to JZ), an American Heart Association Scientist Development Grant (16SDG30410018) and a Research Voucher Award from University of Alabama at Birmingham Center for Clinical and Translational Science (to WZ).
Protocol 1 | |||
mTeSR1 medium | Stem cell technologies | 5850 | |
Growth-factor-reduced matrigel | Corning lifescience | 356231 | |
Y-27632 | Stem cell technologies | 72304 | |
B27 supplement, serum free | Fisher Scientific | 17504044 | |
RPMI1640 | Fisher Scientific | 11875-119 | |
Activin A | R&D | 338-AC-010 | |
BMP-4 | R&D | 314-BP-010 | |
bFGF | R&D | 232-FA-025 | |
Collagenase IV | Fisher Scientific | NC0217889 | |
Hanks Balanced Salt Solution (Dextrose, KCl, KH2PO4, NaHCO3, NaCl, Na2HPO4 anhydrous) | Fisher Scientific | 14175079 | |
Fetal Bovine Serum | Fisher Scientific | 10438018 | |
6-well plate | Corning Lifescience | 356721 | |
10cm dish | Corning Lifescience | 354732 | |
Cell incubator | Panasonic | MCO-18AC | |
Materials | Company | Catalog Number | Comments |
Protocol 2 | |||
Versene | Fisher Scientific | 15040066 | |
Fibrinogen | Sigma-Aldrich | F8630-5g | |
Thrombin | Sigma-Aldrich | T7009-1KU | |
EMB2 medium | Lonza | CC-3156 | |
VEGF | ProSpec-Tany | CYT-241 | |
EPO | Life Technologies | PHC9431 | |
TGF-ß | Peprotech | 100-21C | |
EGM2-MV medium | Lonza | CC-4147 | |
SB-431542 | Selleckchem | S1067 | |
CD31 | BD Bioscience | BDB555445 | |
CD144 | BD Bioscience | 560411 | |
15 mL centrifuge tube | Fisher Scientific | 12565269 | |
Eppendorff Centrifuge | Eppendorf | 5702R | |
Materials | Company | Catalog Number | Comments |
Protocol 3 | |||
CHIR99021 | Stem cell technologies | 720542 | |
PDGF-ß | Prospec | CYT-501-10ug | |
Materials | Company | Catalog Number | Comments |
Protocol 4 | |||
Olive oil | Sigma-Aldrich | O1514 | |
Gelatin | Sigma-Aldrich | G9391 | |
Acetone | Sigma-Aldrich | 179124 | |
Ethanol | Fisher Scientific | BP2818100 | |
Glutaraldehyde | Sigma-Aldrich | G5882 | |
Glycine | Sigma-Aldrich | G8898 | |
IGF | R&D | 291-G1-01M | |
Bovine serum albumin | Fisher Scientific | 15561020 | |
Heating plate | Fisher Scientific | SP88850200 | |
Water bath | Fisher Scientific | 15-462-10Q | |
Materials | Company | Catalog Number | Comments |
Protocol 5 | |||
CaCl2 | Sigma-Aldrich | 223506 | |
-aminocaproic acid | Sigma-Aldrich | A0420000 | |
MEM medium | Fisher Scientific | 12561-056 | |
Syringe | Fisher Scientific | 1482748 | |
Anesthesia ventilator | Datex-Ohmeda | 47810 | |
Anesthesia ventilator | Ohio Medical | V5A | |
Defibrillator | Physiol Control | LIFEPAK 15 | |
1.5T MRI | General Electric | Signa Horizon LX | |
7T MRI | Siemens | 10018532 | |
Gadolinium Contrast Medium (Magnevist) | Berlex | 50419-188-02 | |
2-0 silk suture | Ethilon | 685H | |
3-0 silk suture | Ethilon | 622H | |
3-0 monofilament suture | Ethilon | 627H |