We describe here a method to identify multiple phosphorylations of an intrinsically disordered protein by Nuclear Magnetic Resonance Spectroscopy (NMR), using Tau protein as a case study. Recombinant Tau is isotopically enriched and modified in vitro by a kinase prior to data acquisition and analysis.
Aggregates of the neuronal Tau protein are found inside neurons of Alzheimer’s disease patients. Development of the disease is accompanied by increased, abnormal phosphorylation of Tau. In the course of the molecular investigation of Tau functions and dysfunctions in the disease, nuclear magnetic resonance (NMR) spectroscopy is used to identify the multiple phosphorylations of Tau. We present here detailed protocols of recombinant production of Tau in bacteria, with isotopic enrichment for NMR studies. Purification steps that take advantage of Tau’s heat stability and high isoelectric point are described. The protocol for in vitro phosphorylation of Tau by recombinant activated ERK2 allows for generating multiple phosphorylations. The protein sample is ready for data acquisition at the issue of these steps. The parameter setup to start recording on the spectrometer is considered next. Finally, the strategy to identify phosphorylation sites of modified Tau, based on NMR data, is explained. The benefit of this methodology compared to other techniques used to identify phosphorylation sites, such as immuno-detection or mass spectrometry (MS), is discussed.
Uno de los principales retos de la atención sanitaria en el siglo 21 son enfermedades neurodegenerativas como la enfermedad de Alzheimer (EA). Tau es una proteína asociada a los microtúbulos que estimula la formación de microtúbulos (MT). Tau está igualmente implicado en varias enfermedades neurodegenerativas, llamados tauopatías, de los cuales el más conocido es AD. En estos trastornos, auto-tau agregados en filamentos helicoidales emparejados (PHFs) y se encuentra modificada por muchos residuos de acuerdo con las modificaciones posteriores a la traducción (PTMs) como la fosforilación 1. La fosforilación de la proteína tau está implicada tanto en la regulación de su función fisiológica de estabilización MT y la pérdida patológica de función que caracteriza las neuronas AD.
Además, la proteína Tau, cuando se integra en PHFs en las neuronas enfermas, es invariablemente hyperphosphorylated 2. A diferencia de tau normal que contiene 2-3 grupos fosfato, la Tau hiperfosforilada en PHFs contiene 5-9 Phosphatgrupos e 3. Hiperfosforilación de Tau corresponde tanto a un aumento de la estequiometría en algunos sitios y a la fosforilación de los sitios adicionales que se denominan sitios patológicos de fosforilación. Sin embargo, existe superposición entre los patrones normales de un adulto de la fosforilación de AD y, a pesar de las diferencias cuantitativas en el nivel 4. Cómo algunos eventos de fosforilación función de influencia y la disfunción del Tau sigue siendo desconocida. Nuestro objetivo es descifrar la regulación Tau por PTM a nivel molecular.
Para profundizar en la comprensión de los aspectos moleculares de Tau, tenemos que hacer frente a los desafíos técnicos. En primer lugar, Tau es una proteína intrínsecamente desordenados (IDP) cuando se aíslan en solución. Tales proteínas carecen de estructura tridimensional bien definido en condiciones fisiológicas particulares y requieren métodos biofísicos para estudiar su función (s) y las propiedades estructurales. Tau es un paradigma para la clase creciente de desplazados internos, a menudo se encuentran asociados conpatologías tales como enfermedades neurodegenerativas, por lo tanto aumentando el interés de comprender los parámetros moleculares que subyacen a sus funciones. En segundo lugar, la caracterización de la fosforilación de Tau es un reto analítico, con 80 sitios de fosforilación potenciales a lo largo de la secuencia de la isoforma más larga de Tau 441 amino-ácido. Un número de anticuerpos Se han desarrollado contra epítopos fosforilados de Tau y se utilizan para la detección de Tau patológico en neuronas o tejido cerebral. fosforilación eventos pueden tener lugar en al menos 20 lugares elegidos por las quinasas dirigidas por prolina, la mayoría de ellos en las proximidades de la región rica en prolina. El cualitativa (qué sitios?) Y cuantitativo (lo estequiometría?) La caracterización es difícil, incluso por las más recientes técnicas MS 5.
espectroscopía de RMN se puede utilizar para investigar proteínas desordenadas que son altamente sistemas dinámicos constituidos de conjuntos de confórmeros. espectroscopía de RMN de alta resolución fue aplied para investigar la estructura y función de la proteína Tau. Además, la complejidad del perfil de fosforilación de Tau condujo al desarrollo de herramientas moleculares y nuevos métodos de análisis utilizando RMN para la identificación de sitios de fosforilación de 6 – 8. NMR como un método de análisis permite la identificación de sitios de fosforilación de tau de una manera global, la visualización de todas las modificaciones de sitio único en un único experimento, y la cuantificación de la extensión de la incorporación de fosfato. Este punto es esencial, ya que aunque los estudios de fosforilación de Tau abundan en la literatura, la mayoría de ellos se han realizado con anticuerpos, dejando un alto grado de incertidumbre sobre el perfil completo de fosforilación y por lo tanto el verdadero impacto de los eventos de fosforilación individuales. quinasas recombinantes incluyendo PKA, 3β-glucógeno sintasa quinasa (GSK3), dependiente de ciclina quinasa 2 / ciclina A (CDK2 / CycA), la quinasa dependiente de ciclina 5 (CDK5) / p25 actoproteína ivator, quinasa 2 extracelular de señal regulada (ERK2) y microtúbulos afinidad de regulación de quinasa (MARK), que muestran actividad de fosforilación hacia Tau, se pueden preparar en una forma activa. Además, los mutantes Tau que permiten la generación de isoformas específicas de la proteína Tau con patrones de fosforilación bien caracterizados se utilizan para descifrar el código de la fosforilación de Tau. Espectroscopía de RMN se utiliza entonces para caracterizar muestras de Tau enzimáticamente modificados 6 – 8. Aunque la fosforilación in vitro de Tau es más difícil que pseudo-fosforilación como por mutación de seleccionado Ser / Thr en residuos de ácido glutámico (Glu), este enfoque tiene sus méritos. De hecho, ni los de impacto ni de interacción parámetros estructurales de la fosforilación siempre se pueden imitar por los ácidos glutámico. Un ejemplo es el motivo a su vez observado alrededor de fosfoserina 202 (pSer202) / phosphothreonine 205 (pThr205), que no se reproduce con mutaciones Glu 9.
<p class = "jove_content"> Aquí, la preparación de Tau marcado isotópicamente para las investigaciones de RMN se describirá primero. proteína tau fosforilada por ERK2 se modifica en numerosos sitios descritos como sitios de fosforilación patológicos, y por lo tanto representa un modelo interesante de tau hiperfosforilada. Se presenta un protocolo detallado de Tau en la fosforilación in vitro por ERK2 quinasa recombinante. ERK2 se activa por la fosforilación por la proteína quinasa activada por mitógeno / ERK quinasa (MEK) 10-12. Además de la preparación de proteína modificada, marcado isotópicamente Tau, la estrategia NMR utilizado para la identificación de la PTM se describe.Hemos utilizado la espectroscopía de RMN para caracterizar muestras de Tau enzimáticamente modificados. La expresión recombinante y la purificación se describe aquí para la proteína tau humana de longitud completa de manera similar se pueden utilizar para producir mutantes Tau o Tau dominios. Isotópicamente la proteína es necesaria enriquecido para espectroscopía de RMN, lo que exige de expresión recombinante. La identificación de sitios de fosforilación requiere la asignación de resonancia y una proteína …
The authors have nothing to disclose.
The NMR facilities were funded by the Région Nord, CNRS, Pasteur Institute of Lille, European Community (FEDER), French Research Ministry and the University of Sciences and Technologies of Lille. We acknowledge support from the TGE RMN THC (FR-3050, France), FRABio (FR 3688, France) and Lille NMR and RPE Health and Biology core facility. Our research is supported by grants from the LabEx (Laboratory of Excellence) DISTALZ (Development of Innovative Strategies for a Transdisciplinary approach to Alzheimer’s disease), EU ITN TASPPI and ANR BinAlz.
pET15B recombinant T7 expression plasmid | Novagen | 69257 | Keep at -20°C |
BL21(DE3) transformation competent E.coli bacteria | New England Biolabs | C2527I | Keep at -80°C |
Autoclaved LB Broth, Lennox | DIFCO | 240210 | Bacterial Growth Medium |
MEM vitamin complements 100X | Sigma | 58970C | Bacterial Growth Medium Supplement |
15N, 13C-ISOGRO complete medium powder | Sigma | 608297 | Bacterial Growth Medium Supplement |
15NH4Cl | Sigma | 299251 | Isotope |
13C6-Glucose | Sigma | 389374 | Isotope |
Protease inhibitor tablets | Roche | 5056489001 | Keep at 4°C |
1 tablet in 1ml is 40X solution that can be kept at -20°C | |||
DNaseI | EUROMEDEX | 1307 | Keep at -20°C |
Homogenizer (EmulsiFlex-C3) | AVESTIN | Lysis is realized at 4°C | |
Pierce™ Unstained Protein MW Marker | Pierce | 266109 | |
Active human MEK1 kinase, GST Tagged | Sigma | M8822 | Keep at -80°C |
AKTÄ Pure chromatography system | GE Healthcare | FPLC | |
HiTrap SP Sepharose FF (5 mL column) | GE Healthcare | 17-5156-01 | Cation exchange chromatography columns |
HiPrep 26/10 Desalting | GE Healthcare | 17-5087-01 | Protein Desalting column |
PD MidiTrap G-25 | GE Healthcare | 28-9180-08 | Protein Desalting column |
Tris D11, 97% D | Cortecnet | CD4035P5 | Deuterated NMR buffer |
5 mm Symmetrical Microtube SHIGEMI D2O ( set of 5 inner & outerpipe) | Euriso-top | BMS-005B | NMR Shigemi Tubes |
eVol kit-electronic syringe starter kit | Cortecnet | 2910000 | Pipetting |
Bruker 900MHz AvanceIII with a triple resonance cryogenic probehead | Bruker | NMR spectrometer for data acquisition | |
Bruker 600MHz DMX600 with a triple resonance cryogenic probehead | Bruker | NMR spectrometer for data acquisition | |
TopSpin 3.1 | Bruker | Acquisition and Processing software for NMR experiments | |
Sparky 3.114 | UCSF (T. D. Goddard and D. G. Kneller) | NMR data Analysis software |