2.3Col1a1-GFP(骨芽細胞に特異的)で1と(骨細胞に特異的)免疫蛍光との1:私たちは(特に軟骨細胞で発現さ)/のCreマウス(遍在すべての細胞で発現)Rosa26遺伝子tdtomatoのトレースの組み合わせの2セットを開発しました。データは、骨細胞への軟骨細胞の直接形質転換を実証します。
細胞系統追跡システムは、発生生物学研究に主に使用されてきました。 Creリコンビナーゼの使用は、特定の細胞株およびすべての子孫におけるレポーターの活性化を可能にします。ここでは、軟骨細胞は、直接のCre、Col10a1-のCreおよびアグリカン-CreをERT2( のAgg-CreをERT2)の2種類を使用して、長い骨と下顎頭の開発中に骨芽細胞および骨細胞に変身することを実証するための技術をトレースする細胞系譜を使用し、Rosa26遺伝子と交配tdTomato。 Col10とアグリカンの両方が軟骨細胞のためのマーカーをよく認識しています。
これに基づき、我々は、蛍光免疫組織化学-する特定の細胞マーカーの発現を分析することによって、細胞の運命を定義すると併せてトレース新しい方法細胞系統を開発しました。 Runx2の(早期骨形成細胞のマーカー)および象牙質マトリックスprotein1(DMP1;後期骨形成細胞のマーカー)しました。軟骨細胞由来の骨細胞およびそれらの分化状態を識別するために使用されます。この組み合わせは、細胞系統のトレースの適用を広げるだけでなく、化合物をマウスの生成を簡素化するだけでなく。さらに重要なことは、親細胞の子孫の数、位置、および分化の状態だけではトレース細胞系統よりも多くの情報を提供し、同時に表示されます。結論として、細胞系譜トレース技術および免疫蛍光の同時適用は、in vivoで細胞生物学を研究するための強力なツールです。
開発中に、軟骨内骨形成は、骨格の体積の80%以上を占めています。広く、それが肥大軟骨細胞のアポトーシスから始まると考えられています。続いて、下層の骨髄由来の細胞が侵入し、骨髄および骨膜由来の細胞1,2による新たな骨沈着に続いて血管新生を、開始します。肥大軟骨細胞(HCS)の細胞の運命は、しかし、数十年の3のための議論の課題となっています。最初に、のHCは、軟骨細胞分化経路の末端であるとみなされ、アポトーシスは、一般のHCの最終的な運命であると考えられました。今、一部の研究者は、少なくとも一部のHCが生き残ると軟骨内骨形成に寄与し得ることを示唆しています。彼らは成長板軟骨細胞は、超微細構造に基づいて、骨芽細胞に分化転換する能力、免疫組織化学染色を持っていたし、in vitroで 、これらの方法のいずれもが、ワット、46を研究することを提案したが、骨芽細胞系への軟骨細胞の寄与を実証するに決定的なERE。
細胞系譜トレース技術は、細胞の運命を研究するためのより厳密な方法を提供します。簡単に言えば、唯一の細胞の特定の型で表現されるリコンビナーゼ酵素は、レポーター遺伝子の発現を刺激します。このように、この細胞の種類とその子孫は永久に7のラベルが付いています 。 Cre-loxP系は、一般に系統追跡に使用されます。 CRE(リコンビナーゼ酵素)は、2つのloxP部位の間にSTOPシーケンスを切除し、特定の細胞株( 図1A)でレポーターを活性化します。いくつかのケースでは、研究者は、Creは、エストロゲン受容体(CreをERT2)8の修正された形に融合させ、タモキシフェンなど、薬剤を使用してのCreを活性化するために有利な時点を選択することができます。蛍光レポーターは、彼らが劇的に複雑さを軽減するための実験をトレースする系統における標準となっていますそして、8,9をトレース細胞の運命の精度と効率を向上させます。それはそれは簡単に7( 図1A)を可視化すること、明るい蛍光タンパク質と最強のエピ蛍光を有しているためtdTomatoは、蛍光レポーターの中で最良の選択となってきています。
トレースシステムのRosa26 tdTomato系統を使用することにより、当社グループおよび他の研究者は、HCSは、開発10-14の間に骨細胞へのそれらの表現型を変更することができることを示しています。これを達成するために、我々は、Rosa26遺伝子tdtomato(全ての細胞中に遍在式)/のCre(軟骨細胞に特異的な)マウスとの組み合わせを追跡する二組の開発:2.3Col1a1-GFP(骨芽細胞に特異的)および免疫蛍光(骨細胞に特異的)。データは、両方の方法は、 インビボでの細胞の運命を研究するための実行可能な方法であることを示しています。
技術的制限のために、 インビボでの細胞の挙動を研究することは常に困難です。しかし、細胞系譜トレース技術は、細胞生物学7-9を研究するための強力なツールであることが証明されています。本研究では、さらに、免疫蛍光法と組み合わせることにより、このプロトコールを改良します。この方法では、細胞の運命は、系統追跡の適用を拡大する、複数の関連マーカーによ?…
The authors have nothing to disclose.
This study was supported by NIH grant DE025014 to JQF.
Tamoxifen | Sigma | T5648 | activate the Cre event |
Paraformaldehyde | Sigma | P6148 | fix the sample |
Ethylenediaminetetraacetic acid | Alfa Aesar | A10713 | decalcify the hard tissue |
Sucrose | Sigma | S0389 | dehydrate the tissue |
Hyaluronidase from bovine testes | Sigma | H4272 | retrieve antigen for immunochemical staining |
Bovine serum albumin | Sigma | A3059 | blocking solution |
primary antibody for Runx2 | Cell Signal | D1L7F | primary antibody for immunochemical staining |
primary antibody for DMP1 | provided by Dr. Chunlin Qin | primary antibody for immunochemical staining | |
anti-rabbit IgG | Sigma | 18140 | control for immunochemical staining |
secondary antibody | Invitrogen | A11008 | second antibody for immunochemical staining |
OCT | Tissue-Tek | 4583 | embed the sample for frozen section |
Tween 20 | Fisher Scientific | BP337 | PBST |
non-fluorescing antifade mountant | Life technologies | P36934 | mounting slides |
DAPI | Life technologies | P36931 | nuclear staining |
Hydrophobic Barrier Pen | Vector Laboratories | circle the section on the slide for for immunochemical staining | |
Xylazine | AnaSed | anesthetization | |
Ketaset | Zoetis | anesthetization | |
cryosection machine | Leica | CM1860 UV | |
confocal microscope | Leica | DM6000 CFS |