Summary

制造的UV-Vis和拉曼光谱免疫平台

Published: November 10, 2016
doi:

Summary

Nanoparticle-based optical probes have been designed as a vehicle for detecting antigens using Raman and UV-Vis spectroscopy. Here we describe a protocol for preparing such probes for a UV-Vis/Raman spectroscopy immunoassay in such a way to incorporate future multiplexing capabilities.

Abstract

免疫测定用于检测基于相关联的抗体的存在的蛋白质。因为他们的研究和临床广泛使用,免疫仪器和材料的大型基础设施都可以找到。例如,96和384孔聚苯乙烯板是市售的,并有一个标准设计,以容纳不同制造商紫外可见(UV-VIS)光谱法的机器。此外,各种各样的免疫球蛋白,检测标记和定制免疫测定的设计,如酶联免疫吸附测定(ELISA)阻断剂是可用的。

尽管现有的基础设施,标准ELISA试剂盒不符合所有研究的需要,要求个体免疫的发展,这可能是昂贵和费时的。例如,酶联免疫吸附试剂盒具有低复用(一次检测多于一种分析物的)的能力,因为它们通常依赖于荧光或栏orimetric方法进行检测。比色法和基于荧光分析已经有限的,由于宽光谱峰复用功能。与此相反,拉曼基于光谱的方法有用于复更大能力由于窄发射峰。拉曼光谱的另一个优点是,喇曼记者遇到显著少漂白比荧光标签1。尽管优势拉曼记者有超过荧光灯和比色标记,协议制造基于拉曼免疫是有限的。本文的目的是提供一种协议来制备官能化的探针结合使用以用于直接检测由UV-VIS分析和拉曼光谱的分析物的聚苯乙烯板。该协议将允许研究人员同时在预先建立的基础设施资本采取做它自己的方式为未来的多分析物检测。

Introduction

典型的三明治免疫测定法间接检测使用两种抗体的抗原的存在。捕获抗体结合至固体表面,并形成一种抗体 – 抗原时复杂接近适当的抗原。然后,检测抗体被引入并与抗原结合。洗涤后,将抗体/抗原/抗体复合物的遗体和由标记的检测抗体, 如图1A表明被检测到。典型的检测是通过荧光或比色检测完成后,限制了复用,由于宽光谱峰2,3 10分析物。相反,基于拉曼系统具有导致与源声称高达100分析物2,3的同时检测增强复用功能窄得多的发射峰。

许多文献资料都可以覆盖到免疫测定相关的重要方面4 6如一步一步细节打造个性化的ELISA试剂盒。不幸的是,这些协议是用于荧光或比色检测,限制定制免疫测定的复用能力。为了满足这一需求,我们提出了一个详细过程来制作, 如图1B所示此前7直接免疫公布的紫外-可见分光光度计/拉曼免疫。

这个协议包括官能化金基于纳米颗粒探针的制造中,在图2中所示,使拉曼/紫外可见探针通过拉曼记者结合金纳米颗粒的表面(金纳米粒子)开始的过程。该金纳米粒子,然后与使用聚乙二醇(PEG)相关抗体官能化。在金纳米粒子其余结合位点通过结合甲氧基聚乙二醇硫醇(MPEG-SH)至金纳米粒子,以防止在分析过程中后续的非特异性结合阻断。的制备金纳米粒子探针通过结合到抗原测试如在图1B所示固定到聚苯乙烯板的孔中。在洗涤所述板,所述金纳米粒子探针使用UV-Vis光谱检测到,同时用拉曼光谱检测相关的拉曼记者。结合紫外 – 可见和拉曼光谱数据提供分析的两种方法,从而增强该免疫的能力。

Protocol

1.缓冲区的制备 磷酸盐缓冲盐水(PBS)中 稀释50毫升10倍的PBS用450ml HPLC级水,使1×PBS中的浓度。无菌过滤器以0.22微米过滤器的溶液。 在室温下商店溶液。 Tris缓冲盐水+吐温20(TBST)的制备 稀释50毫升10倍的Tris缓冲盐水(TBS)中的用450ml HPLC级水,使1×浓度。加入250微升吐温20的吐温20的0.05%(体积/体积)。无菌过滤器以0.22微米过…

Representative Results

在这项研究中,被用于UV-Vis光谱60nm的金颗粒。紫外可见从收集400〜700纳米,峰面积为每个金纳米粒子浓度使用开放源码频谱分析软件8确定吸收光谱。峰值积分之前,所收集的光谱使用三点多项式拟合进行基线校正。峰面积被用作图4中展示了生成的对数的校准曲线,它应该指出的是图4和5结合对数的校准曲线。采用非线性校正曲线可以显著扩大的检测…

Discussion

在详细的协议,有解决几个关键点。一个问题是拉曼记者和金纳米粒子的选择。虽然该协议被写入适于个人使用,拉曼记者DTTC用作一个例子。 DTTC是带正电的记者和结合至带负电荷的表面,如柠檬酸盐封端的金纳米粒子。该协议可以通过使用金纳米颗粒带有正表面电荷适于带负电荷的记者。例如,聚乙烯亚胺(PEI)封端的AuNPs提供正的表面电荷和带负电荷的记者更好结合。

维…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

This work was supported by a Research Catalyst Award from Utah State University. The authors would like to thank Annelise Dykes, Cameron Zabriskie, and Donald Wooley for their contributions.

Materials

60nm Gold Nanoparticle Ted Pella, Inc. 15708-6 These are citrate capped gold nanoparticles. Please see Discussion for relationship between Raman reporter and AuNP surface charge and its imporance to proper selection of AuNP and/or Raman reporter.
Sodium Bicarbonate Fisher Scientific S233-500
Methanol Pharmco-Aaper 339000000
Tris Buffered Saline (10X) pH 7.5 Scy Tek TBD999
Bottle Top Filtration Unit VWR 97066-202
Tween 20 (polysorbate 20) Scy Tek TWN500 Used as an emulsifying agent for washing steps.
Phosphate Buffered Saline 10X Concentrate, pH 7.4 Scy Tek PBD999
Protein LoBind Tube 2.0 mL Eppendorf Tubes 22431102 LoBind tubes prevent binding of proteins and AuNPs to surfaces of the tubes.
Protein LoBind Tube 0.5 mL Eppendorf Tubes 22431064 LoBind tubes prevent binding of proteins and AuNPs to surfaces of the tubes.
Microplate Devices UniSeal GE Healthcare 7704-0001 Used for sealing and storing functionalized plates.
Assay Plate, With Low Evaporation Lid, 96 Well Flat Bottom Costar 3370
HPLC grade water Sigma Aldrich 270733-4L
3,3′-Diethylthiatricarbocyanine iodide (DTTC) Sigma Aldrich 381306-250MG Raman reporter
mPEG-Thiol, MW 5,000 – 1 gram Laysan Bio, Inc. MPEG-SH-5000-1g
OPSS-PEG-SVA, MW 5,000 – 1 gram Laysan Bio, Inc. OPSS-PEG-SVA-5000-1g OPSS-PEG-SVA has an NHS end.
Mouse IgG, Whole Molecule Control Thermo Fisher Scientific 31903 Antigen
Goat anti-Mouse IgG (H+L) Cross Adsorbed Secondary Antibody Thermo Fisher Scientific 31164 Antibody
Human Serum Albumin Blocking Solution Sigma Aldrich A1887-1G Bovine serum albumin can be used instead.
In-house built 785nm inverted Raman microscope unit N/A N/A An inverted Raman microscope is best for proper focusing onto surface of the well plate. Otherwise a very low magnification will be used due to height of the 96-well plate. An in-house built system was used as it was cheaper than buying from a vendor. However, any commercially available inverted Raman microscope system can be used.
Mini Centrifuge Fisher Schientific 12-006-900
UV-Vis Spectrophotometer Thermo Scientific Nanodrop 2000c
UV-Vis Spectrophotometer BioTek Synergy 2
Desalting Columns Thermor Scientific 87766

Referencias

  1. Israelsen, N. D., Hanson, C., Vargis, E. Nanoparticle properties and synthesis effects on surface-enhanced Raman scattering enhancement factor: an introduction. Sci. World J. , e124582 (2015).
  2. Wang, Y., Schlücker, S. Rational design and synthesis of SERS labels. Analyst. 138 (8), 2224-2238 (2013).
  3. Wang, Y., Yan, B., Chen, L. SERS tags: novel optical nanoprobes for bioanalysis. Chem. Rev. 113 (3), 1391-1428 (2013).
  4. . . The Immunoassay Handbook: Theory and applications of ligand binding, ELISA and related techniques. , (2013).
  5. Cox, K. L., Devanarayan, V., Kriauciunas, A., Manetta, J., Montrose, C., Sittampalam, S. Immunoassay Methods. Assay Guid. Man. , (2004).
  6. . . ELISA development guide. , (2016).
  7. Israelsen, N. D., Wooley, D., Hanson, C., Vargis, E. Rational design of Raman-labeled nanoparticles for a dual-modality, light scattering immunoassay on a polystyrene substrate. J. Biol. Eng. 10, (2016).
  8. Menges, F. . Spekwin32 – optical spectroscopy software. Version 1.72.1. , (2016).
  9. Findlay, J. W. A., Dillard, R. F. Appropriate calibration curve fitting in ligand binding assays. AAPS J. 9 (2), E260-E267 (2007).
  10. Yu, X. Quantifying the Antibody Binding on Protein Microarrays using Microarray Nonlinear Calibration. BioTechniques. 54, 257-264 (2013).
  11. Armbruster, D. A., Pry, T. Limit of blank, limit of detection and limit of quantitation. Clin. Biochem. Rev. 29 (Suppl 1), S49-S52 (2008).
  12. . . EP17-A2: Evaluation of Detection Capability for Clinical Laboratory Measurement Procedures; Approved Guideline. 32. No 8, (2012).
  13. Leigh, S. Y., Som, M., Liu, J. T. C. Method for assessing the reliability of molecular diagnostics based on multiplexed SERS-coded nanoparticles. Plos One. 8 (4), e62084 (2013).
  14. Sinha, L. Quantification of the binding potential of cell-surface receptors in fresh excised specimens via dual-probe modeling of SERS nanoparticles. Sci. Rep. 5, 8582 (2015).
  15. Shi, W., Paproski, R. J., Moore, R., Zemp, R. Detection of circulating tumor cells using targeted surface-enhanced Raman scattering nanoparticles and magnetic enrichment. J. Biomed. Opt. 19, 056014 (2014).
  16. Xia, X., Li, W., Zhang, Y., Xia, Y. Silica-coated dimers of silver nanospheres as surface-enhanced Raman scattering tags for imaging cancer cells. Interface Focus. 3 (3), 20120092 (2013).
  17. McLintock, A., Cunha-Matos, C. A., Zagnoni, M., Millington, O. R., Wark, A. W. Universal surface-enhanced Raman tags: individual nanorods for measurements from the visible to the infrared (514-1064 nm). Acs Nano. 8 (8), 8600-8609 (2014).

Play Video

Citar este artículo
Hanson, C., Israelsen, N. D., Sieverts, M., Vargis, E. Fabricating a UV-Vis and Raman Spectroscopy Immunoassay Platform. J. Vis. Exp. (117), e54795, doi:10.3791/54795 (2016).

View Video